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Abstract. The Walnut Digital Signature Algorithm (WalnutDSA) is a group-theoretic, public-
key method that is part of the NIST Post-Quantum Cryptography standardization process. Buel-
lens and Blackburn proposed a series of attacks that demonstrated that the parameters proposed

to NIST were too small, resulting in a too-small search space that could enable a practical forgery
attack. We show that with a modest parameter-only increase we can block these attacks to the
desired security level without a significant impact in the performance while making WalnutDSA
completely secure against these attacks.

1. Introduction

The digital signature algorithm known as WalnutDSATM was introduced in [1]. It is a group
theoretic protocol which uses non linear operations in the Artin braid group BN [3] together with
operations in GL(N,Fq), the N ×N matrix group over the finite field Fq with q elements.

Hart et al [7] proposed a practical forgery attack on WalnutDSATM which required that the
private keys (w,w′) be equal (see §5 for how to construct w,w′). The Hart et al attack is blocked
by the fact that it produces forged signatures that are very long, but the attack can also be easily
defeated by increasing parameter sizes (see [2]).

Blackburn and Buellens [5] modified the Hart et al attack [7] so that the attack works even if w 6=
w′.
The attack was mounted against the WalnutDSATM NIST submission, which uses an older version
of WalnutDSATM which suggested running the protocol on B8,F32 for 128-bit security and B8,F256

for 256-bit security. Specifically, the attack in [5] showed that these parameter choices were too
small.

Buellens-Blackburn [5] present attacks that produce forgeries whose lengths are the same or
even shorter that legitimate signatures but the attacks are still exponential in running time and
can be completely thwarted by running the protocol on B10,FM31

, where M31 is the Mersenne prime
231−1 for 128-bit security and B10,FM61

for 256-bit security. Furthermore, even with these increased
parameter sizes, the high efficiency and low power consumption advantages of WalnutDSATM for
constrained devices are still retained.

Additionally, Blackburn and Buellens [5] present a birthday attack on the “Reversing E-Multiplication”
(REM) problem which is a hard problem underlying the WalnutDSATM protocol. This attack is
again exponential in running time and is completely thwarted by running the WalnutDSATM pro-
tocol on B10,FM31

, for 128-bit security and B10,FM61
for 256-bit security.
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2. Brief Introduction to WalnutDSATM

A core tool in group theoretic cryptography is the fact that an element of a group can be
rewritten (using the relations in the group) so that the original expression of the element cannot
be recovered. Consider, for example (for N ≥ 2), the N -strand braid group with Artin generators
{b1, b2, . . . , bN−1}, subject to the following relations:

bibi+1bi = bi+1bibi+1, (i = 1, . . . , N − 2),(1)

bibj = bjbi, (|i− j| ≥ 2).(2)

Let R : BN → BN denote a rewriting algorithm. Well known examples are the Birman-Ko-Lee
canonical form [4] or the Dehornoy handle reduction algorithm [6]. The security of WalnutDSATM

is based on the hard problems known as Reversing E-multiplication (REM) as well as the cloaked
conjugacy search problem. E-multiplication, in its simplest form, is a function which on input
of a braid element in BN outputs a pair consisting of a matrix in GL(N,Fq) together with a
permutation in SN . E-multiplication is based on the colored Burau representation of the BN [8].
Cloaking elements of BN are defined to be braids whose output on E-multiplication is the pair
consisting of the identity matrix and the identity permutation.

Fix a hash function H. In brief, the protocol begins with a message m which is first hashed to
H(m) and then encoded as an element E(H(m)) ∈ BN . The signer’s private key consists of two
nontrivial elements in BN , denoted w,w′ (satisfying certain technical properties), and the signer’s
public key will be an N ×N matrix over a finite field together with a permutation on N symbols,
i.e., an element in the symmetric group SN . The signed message will be a braid in BN of the form

R
(

v1 · w−1 · v · E(H(m)) · w′ · v2
)

,

where R denotes a rewriting algorithm on BN and v, v1, v2 ∈ BN are appropriate cloaking elements.
Signature verification can be executed rapidly by performing E-multiplication on the signature.

3. Colored Burau Representation of the Braid Group

Each braid β ∈ BN determines a permutation in SN (group of permutations of N letters)
as follows: For 1 ≤ i ≤ N − 1, let σi ∈ SN be the ith simple transposition, which maps i →
i + 1, i + 1 → i, and leaves {1, . . . , i − 1, i + 2, . . . , N} fixed. Then σi is associated to the Artin
generator bi. Further, if β ∈ BN is written as in (??), we take β to be associated to the permutation
σβ = σi1 · · ·σik . A braid is called pure if its underlying permutation is trivial (i.e., the identity
permutation).

Let Fq denote the finite field of q elements, and for variables t1, t2, . . . , tN , let

Fq[t1, t
−1
1 , . . . , tN , t−1

N ]

denote the ring of Laurent polynomials in t1, t2, . . . , tN with coefficients in Fq. Next, we introduce
the colored Burau representation

ΠCB : BN → GL
(

N,Fq[t1, t
−1
1 , . . . , tN , t−1

N ]
)

× SN .

First, we define the N × N colored Burau matrix (denoted CB) of each Artin generator as
follows[?].
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For 2 ≤ i ≤ N − 1, the matrix CB(bi) is defined by
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where the indicated variables appear in row i, and if i = 1 the leftmost t1 is omitted.

We similarly define CB(b−1
i ) by modifying (4) slightly:

CB(b−1
i ) =
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,

where again the indicated variables appear in row i, and if i = 1 the leftmost 1 is omitted.

Recall that each bi has an associated permutation σi. We may then associate to each braid
generator bi (respectively, inverse generator b−1

i ) a colored Burau/permutation pair (CB(bi), σi)

(resp., (CB(b−1
i ), σi)). We now wish to define a multiplication of such colored Burau pairs. To

accomplish this, we require the following observation. Given a Laurent polynomial f(t1, . . . , tN )
in N variables, a permutation in σ ∈ SN can act (on the left) by permuting the indices of the
variables. We denote this action by f 7→ σf :

σf(t1, t2, . . . , tN ) = f(tσ(1), tσ(2), . . . , tσ(N)).

We extend this action to matrices over the ring of Laurent polynomials in the ti by acting on each
entry in the matrix, and denote the action by M 7→ σM . The general definition for multiplying two
colored Burau pairs is now defined as follows: given b±i , b

±

j , the colored Burau/permutation pair

associated with the product b±i · b±j is

(CB(b±i ), σi) · (CB(b±j ), σj) =
(

CB(b±i ) · (σiCB(b±j )), σi · σj

)

.

We extend this definition to the braid group inductively: given any braid

β = bǫ1i1 b
ǫ2
i2
· · · bǫkik ,

we can define a colored Burau pair (CB(β), σβ) by

(CB(β), σβ) = (CB(bǫ1i1 )·
σi1CB(bǫ2i2 )·

σi1
σi2CB(bǫ3i3 )) · · · σi1

σi2
···σik−1CB(bǫkik ), σi1σi2 · · ·σik).
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The colored Burau representation is then defined by

ΠCB(β) := (CB(β), σβ).

One checks that ΠCB satisfies the braid relations and hence defines a representation of BN .

4. E-Multiplication and Cloaking Elements

In brief, E-Multiplication is an action of a group of ordered pairs associated with BN on a direct
product of two groups. Given an element β ∈ BN , we can associate with β both the colored Burau
matrix CB(β) (whose entries are Laurent polynomials in N variables) and the natural permutation
σβ of the braid which is an element in SN . Since permutations themselves act on the colored Burau
matrices, the ordered pairs (CB(β), σβ) form a group under the semi-direct product operation. By
fixing a field Fq, and a collection of N invertible elements in Fq, {τ1, . . . , τN}, termed t-values, we
can define the right action of (CB(β), σβ) on the ordered pair (M,σ) ∈ GLN (Fq)× SN :

(M,σ) ⋆ (CB(β), σβ) =
(

M · σ
(

CB(β
)

) ↓t-values, σ ◦ σβ

)

,

where the ↓t-values indicates the polynomials are evaluated at the t-values. While the Laurent
polynomials which would naturally occur as entries of the colored Burau matrices would become
computationally unmanageable, the generators bi of BN have sparse colored Burau matrices, and,
hence, E-Multiplication can be evaluated very efficiently and rapidly.

The above discussion of an infinite group acting on a finite group necessitates the existence of
stabilizing elements in the group BN . With this in mind, we have the following:

Definition (Cloaking element) Let m ∈ GL(N,Fq) and σ ∈ SN . An element v in the pure braid
subgroup of BN (i.e., the permutation associated to v is the identity) is termed a cloaking element
of (m,σ) if it satisfies (m,σ) ⋆ v = (m,σ).

Thus a cloaking element will essentially disappear when E-Multiplication is evaluated. Since
stabilizing elements of a group action form a subgroup, the following proposition is immediate:

Proposition 4.1. The set of braids that cloak a specific ordered pair (m,σ) forms a subgroup of
BN .

It should be remarked that when cloaking elements are constructed in the manner above, such
elements only depend on the permutation σ. Thus, with a small abuse of language, we can say the
element v cloaks for the permutation σ without any ambiguity.

Definition (κ cloaking)Given an element β ∈ BN , the output of κ iterations of randomly inserting
cloaking elements into the braid β is defined to be a κ–cloaking of β and is denoted by κ(β).

5. WalnutDSATM Signature Generation and Verification

For β ∈ BN let P(β) denote the E-multiplication of β against the identity element, i.e.,

P(β) = (IdN , IdSN
) ⋆ β
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where IdN is the N×N identity matrix and IdSN
is the identity element in the symmtric group SN .

The Signer’s private key consists of two random freely reduced braids w,w′ ∈ BN . The Signer’s
public key is

(

P(w), P(w′)
)

.

Fix a hash function H. To sign a message m ∈ {0, 1}∗ the Signer performs the following steps:

Digital Signature Generation:

1. Compute H(m).

2. Generate cloaking elements v, v1, and v2 such that

− v cloaks (IdN , IdSN
),

− v1 cloaks P(w).

− v2 cloaks P(w′).

3. Generate the encoded message E(H(m)).

4. Compute Sig = R
(

κ
(

v1 · w−1 · v · E(H(m)) · w′ · v2
) )

, which is a rewritten braid.

5. The final signature for the message m is the ordered pair (H(m), Sig).

Signature Verification: The signature (m, Sig) is verified as follows:

1. Generate the encoded message E(H(m)).

2. Evaluate P(E(H(m))).

3. Evaluate the E-Multiplication P(w) ⋆ Sig.

4. Test the equality

(5) Matrix
(

P(w) ⋆ Sig
)

?
= Matrix

(

P
(

E(H(m))
)

)

·Matrix
(

P
(

w′
)

)

,

where Matrix denotes the matrix part of the ordered pair in question, and the multiplication on
the right is the usual matrix multiplication. The signature is valid if and only if (5) holds and the
signature has length ≤ 2L where L is a certain positive integer such that all valid WalnutDSATM

signatures have length in the range [L, 2L].

6. The Buellens-Blackburn Forgery Attacks

Blackburn and Buellens [5] present two forgery attacks on WalnutDSATM. The first is modeled
on the factorization attack of Hart et al attack [7] while the second is a collision search attack.

Factorization Attack: In order to remove the assumption that the private keys (w,w′) may
not be equal which is required for the Hart et al attack [7] Blackburn and Buellens point out that if
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one has 3 messages m,m1,m2 with h = Matrix
(

P (E(H(m))
)

, h1 = Matrix
(

P (E(H(m1))
)

, h2 =

Matrix
(

P (E(H(m2))
)

, and three private keys w1, w2, w3 then the following holds:

• If h = h−1
1 and s1 is a valid signature for m1 under the public key (P(v1),P(v2)) then s−1

1 is
a valid signature for h under the public key (P(v2),P(v1));

• If h = h1h2 and s1, s2 are valid signatures for m1,m2 under the public keys (P(v1),P(v2)),
(P(v2),P(v1)), respectively, then s1·s2 is a valid signature form under the public key (P(v1),P(v3)).

Assume the attacker knows message signature pairs (mi, si) and associated matrices hi =
Matrix

(

P (E(H(mi))
)

, (i = 1, 2, . . . , r) that are valid under the same public key (P(v1),P(v2)).
Then it easily follows that for an odd number of factors

si1 · s−1
i2

· · · s−1
iL−1

· siL

is a valid signature under the public key (P(v1),P(v2)) for any message m satisfying

Matrix
(

P (E(H(m))
)

= hi1 · h−1
i2

· · · h−1
iL−1

· hiL .

At this point the attacker may implement the Hart et al factorization attack [7], but the forged
signatures will be way too long and the running time will still be exponential so the attack will be
completely thwarted on B10,FM31

and B10,FM61
with security levels at least 2128, 2256, respectively.

Collision Search Attack:

The second forgery attack introduced in [5] seeks to find two messages m1,m2 such that

P (E(H(m1)) = P (E(H(m2)) .

Finding such a collision breaks EUF-CMA. The method used in [5] to find a collision is based on
the Oorschot and Wiener algorithm [9] which is a parallelizing collision search algorithm built upon
the Pollard rho-method. Clearly, to determine the probability of a collision it is enough to find the

size of P
(

E ({0, 1}∗)
)

. Let PN denote the pure braid subgroup of BN whose index in BN is N !.

Since the encoding function E takes values in PN it is enough to obtain the size of P(PN ) which

they estimate as ≈ q(N−2)2+1 in [5].

As also pointed out in [5] any braid output by the encoding mechanism E is a product of the
image (under P) of the encoding braids used and, thus, it is essential that the subspace spanned
by said images is sufficiently large. An example of an encoding that yields sufficient security, and
hence, defeats this avenue of attack is given as follows. Let N = 12 and let S be the periodic
sequence of tuples

{(5, 7, 9, 11), (4, 6, 8, 10), (3, 5, 7, 9), (2, 4, 6, 8), (1, 3, 5, 7), (2, 4, 6, 8), (3, 5, 7, 9), (4, 6, 8, 10), ...}.

One can check that this dimension is 122, so using q = 32 or 256 results in sufficiently large spaces.
For the case of N = 10, S can be the sequence {(3, 5, 7, 9), (2, 4, 6, 8), (1, 3, 5, 7), (2, 4, 6, 8), ...} which
results in a dimension of 82.
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7. Defeating the Buellens-Blackburn Forgery Attacks

The forgery attacks presented by Blackburn and Buellens in [5] are all exponential in running
time as explained above. They can be completely thwarted by running the protocol on B10,FM31

for 128-bit security and B10,FM61
for 256-bit security.

8. Defeating the Buellens-Blackburn REM Attack

The third attack discussed in [5] is an exponential attack to reverse E-Multiplication (REM)
which is a hard problem underlying the security of WalnutDSATM . The running time of this
attack is estimated as qN/2−1 in [5]. Here is a direct quote from the Blackburn-Beullens paper [5].

“There does not seem to be a better way to block the attack other than just increasing the param-
eters to ensure that qN/2−1 is higher than the desired security level. One way to do this is to take
N = 10, q = 232 to achieve 128 bits of security, and N = 10, q = 264 for 256 bits of security.”

Recall that the T-values for E-Multiplication are just a subset of N invertible elements in Fq

denoted {τ1, τ2, . . . , τN}. The Buellens-Blackburn REM attack assumed that for two integers a, b

with 1 ≤ a < b ≤ N we specify that τa = τb = 1. If we instead we choose τa, τb so that τa · τb = −1
then the running time of the REM attack is much higher. In fact, an additional factor of

√
q · √x

is added to the runtime, where x is a parameter in their attack (they set x = 60 for N = 8 and we
expect x = 96 for N = 10). This results in an (unverified) search time of at least

√
x · q(N−1)/2.

Here again, the parameters B10,FM31
for 128-bit security and B10,FM61

for 256-bit security
effectively defeat the REM attack.

Increasing N and q does affect the performance of WalnutDSA. In a software implementation,
each E-Multiplication step requires N multiplications and 2N additions within Fq. This means
that increasing N from 8 to 10 changes the number of basic operations from 8 to 10 multiplications
and 16 to 20 additions, a 25% increase in the number of operations per E-Multiplication.

Increasing N also affects the length of the signature. The length increase can be obtained
heuristically through testing. Using N = 8 the average length of a signature was 1399 Artin
generators whereas increasing to N = 10 increased the length to 1909, a 36% increase in signature
length (and an equivalent increase in signature verification time due to the 36% increase in the
number of E-Multiplications required).

It should be noted that the increase of N also affects the signature storage size, because with
N = 8 each generator only needs 4 bits, whereas 5 bits are required for N = 10. This increases the
storage requirements by an additional 25%, for a total storage increase of 70%.

Increasing N and q affect the public key size, because the matrix is an N ×N matrix over Fq,
which requires N2log2(q) bits for each matrix. Increasing from N = 8, q = 32 to N = 10, q = M31

results in an increase in public key matrices from 320 to 3100 bits each (a 10x increase). However,
this 10x increase still results in public keys significantly shorter than the majority of NIST signature
candidates.

Finally, increasing q from 32 toM31 does change the implementation of operations in Fq. Whereas
on F32 the operations could be implemented as a table lookup, using M31 no longer provides for that
option. The primary consideration for performance of Fq is the state of the multiplier. Specifically,
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if the platform has a 32 × 32 → 64 bit multiplier then the operation can be performed in only
two instructions (multiplication and reduction). Some platforms don’t provide this, but do provide
a 32 × 32 → 32(high) and 32 × 32 → 32(low) operation. Other platforms truncate the result.
And finally, some very small platforms don’t provide for a 32-bit multiplier at all. The resulting
performance degredation is determined by the available multiplier. We note that even on small
platforms like an ARM Cortex M4, the multiplier is sufficient to compute the result in the single
multiply instruction. The use of Mersenne primes like M31 affords a simple reduction methodology,
which is simply a shift, addition, and possibly overflow subtraction.

All in, the signature verification times of WalnutDSA on the NIST test platform increased from
160,000 to 230,000 cycles due to these changes, a performance degredation of only 43%.

9. Conclusion

WalnutDSA is a group-theoretic, public-key method that is part of the NIST Post-Quantum
Cryptography standardization process. Blackburn and Buellens showed a series of attacks against
the parameters proposed for the NIST process, showing weaknesses in the search space and a
practical forgery attack that produces signatures that are short enough to be considered valid. We
have shown that with a modest parameter increase from N = 8 to N = 10 and from q = 32 to q =
M31 = 231−1 we can block these attacks to the desired security level without a significant decrease
in performance of WalnutDSA, rendering WalnutDSA completely secure against this attack.

Specifically we find that with these changes the signature storage size increased by 70%, the
public key storage increased by 10x, and on the NIST test platform signature verification time only
increased by 43%. Moreover, WalnutDSA still runs efficiently on all embedded platforms tested.
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