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Abstract. TheWalnut Digital Signature Algorithm (WalnutDSA) is a quantum-resistant, group-

theoretic, public-key method. Merz and Petit found that by using the Garside Normal Form of
a WalnutDSA signature they could discover traces of the Garside form of the original encoded
message, and use that knowledge to create a forgery. We show (and Merz and Petit agree) that by
adding sufficient cloaking elements into the message encoding within the signature, the Garside

form is aduquately modified that no traces can be found and that forgeries can no longer be made.
With this small addition, WalnutDSA signatures become completely immune to this attack.

1. Introduction

The digital signature algorithm known as WalnutDSATM was introduced in [1]. It is a group
theoretic protocol which uses non linear operations in the Artin braid group BN [2] together with
operations in GL(N,Fq), the N ×N matrix group over the finite field Fq with q elements.

Recently, Merz and Petit [6] proposed a practical forgery attack on WalnutDSATM. They found
that using the Garside Normal Form of the signature allowed them to find commonalities with the
Garside form of the encoded message, and using those commonalities they could create a forgery. As
pointed out by the authors, the attack can be defeated by adding cloaking elements into the encoded
message. Specifically, they conjecture that each additional cloaking element effectively mutates
approximately five (5) permutation braids in the Garside Normal Form, but, when mutated, their
attack no longer succeeds.

In this paper we show that with a sufficient number of cloaking elements their attack fails to
create forgeries.

2. Brief Introduction to WalnutDSATM

A core tool in group theoretic cryptography is the fact that an element of a group can be
rewritten (using the relations in the group) so that the original expression of the element cannot
be recovered. Consider, for example (for N ≥ 2), the N -strand braid group with Artin generators
{b1, b2, . . . , bN−1}, subject to the following relations:

bibi+1bi = bi+1bibi+1, (i = 1, . . . , N − 2),(1)

bibj = bjbi, (|i− j| ≥ 2).(2)
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Let R : BN → BN denote a rewriting algorithm. Well known examples are the Birman-Ko-Lee
canonical form [3] or the Dehornoy handle reduction algorithm [4]. The security of WalnutDSATM

is based on the hard problems known as Reversing E-multiplication (REM) as well as the cloaked
conjugacy search problem. E-multiplication, in its simplest form, is a function which on input
of a braid element in BN outputs a pair consisting of a matrix in GL(N,Fq) together with a
permutation in SN . E-multiplication is based on the colored Burau representation of the BN [7].
Cloaking elements of BN are defined to be braids whose output on E-multiplication is the pair
consisting of the identity matrix and the identity permutation.

Fix a hash function H. In brief, the protocol begins with a message m which is first hashed to
H(m) and then encoded as an element E(H(m)) ∈ BN . The signer’s private key consists of two
nontrivial elements in BN , denoted w,w′ (satisfying certain technical properties), and the signer’s
public key will be an N ×N matrix over a finite field together with a permutation on N symbols,
i.e., an element in the symmetric group SN . The signed message will be a braid in BN of the form

R
(

v1 · w
−1 · v · E(H(m)) · w′ · v2

)

,

where R denotes a rewriting algorithm on BN and v, v1, v2 ∈ BN are appropriate cloaking elements.
Signature verification can be executed rapidly by performing E-multiplication on the signature.

3. Colored Burau Representation of the Braid Group

Each braid β ∈ BN determines a permutation in SN (group of permutations of N letters)
as follows: For 1 ≤ i ≤ N − 1, let σi ∈ SN be the ith simple transposition, which maps i →
i + 1, i + 1 → i, and leaves {1, . . . , i − 1, i + 2, . . . , N} fixed. Then σi is associated to the Artin
generator bi. Further, if β ∈ BN is written as in (??), we take β to be associated to the permutation
σβ = σi1 · · ·σik . A braid is called pure if its underlying permutation is trivial (i.e., the identity
permutation).

Let Fq denote the finite field of q elements, and for variables t1, t2, . . . , tN , let

Fq[t1, t
−1
1 , . . . , tN , t−1

N ]

denote the ring of Laurent polynomials in t1, t2, . . . , tN with coefficients in Fq. Next, we introduce
the colored Burau representation

ΠCB : BN → GL
(

N,Fq[t1, t
−1
1 , . . . , tN , t−1

N ]
)

× SN .

First, we define the N × N colored Burau matrix (denoted CB) of each Artin generator as
follows[?].

(3) CB(b1) =















−t1 1
1

1
. . .

1















,
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For 2 ≤ i ≤ N − 1, the matrix CB(bi) is defined by

(4) CB(bi) =

















1
. . .

ti −ti 1
. . .

1

















,

where the indicated variables appear in row i, and if i = 1 the leftmost t1 is omitted.

We similarly define CB(b−1
i ) by modifying (4) slightly:

CB(b−1
i ) =

















1
. . .

1 − 1
ti+1

1
ti+1

. . .

1

















,

where again the indicated variables appear in row i, and if i = 1 the leftmost 1 is omitted.

Recall that each bi has an associated permutation σi. We may then associate to each braid
generator bi (respectively, inverse generator b−1

i ) a colored Burau/permutation pair (CB(bi), σi)

(resp., (CB(b−1
i ), σi)). We now wish to define a multiplication of such colored Burau pairs. To

accomplish this, we require the following observation. Given a Laurent polynomial f(t1, . . . , tN )
in N variables, a permutation in σ ∈ SN can act (on the left) by permuting the indices of the
variables. We denote this action by f 7→ σf :

σf(t1, t2, . . . , tN ) = f(tσ(1), tσ(2), . . . , tσ(N)).

We extend this action to matrices over the ring of Laurent polynomials in the ti by acting on each
entry in the matrix, and denote the action by M 7→ σM . The general definition for multiplying two
colored Burau pairs is now defined as follows: given b±i , b

±

j , the colored Burau/permutation pair

associated with the product b±i · b±j is

(CB(b±i ), σi) · (CB(b±j ), σj) =
(

CB(b±i ) · (
σiCB(b±j )), σi · σj

)

.

We extend this definition to the braid group inductively: given any braid

β = bǫ1i1 b
ǫ2
i2
· · · bǫkik ,

we can define a colored Burau pair (CB(β), σβ) by

(CB(β), σβ) = (CB(bǫ1i1 )·
σi1CB(bǫ2i2 )·

σi1
σi2CB(bǫ3i3 )) · · · σi1

σi2
···σik−1CB(bǫkik ), σi1σi2 · · ·σik).

The colored Burau representation is then defined by

ΠCB(β) := (CB(β), σβ).

One checks that ΠCB satisfies the braid relations and hence defines a representation of BN .
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4. E-Multiplication and Cloaking Elements

In brief, E-Multiplication is an action of a group of ordered pairs associated with BN on a direct
product of two groups. Given an element β ∈ BN , we can associate with β both the colored Burau
matrix CB(β) (whose entries are Laurent polynomials in N variables) and the natural permutation
σβ of the braid which is an element in SN . Since permutations themselves act on the colored Burau
matrices, the ordered pairs (CB(β), σβ) form a group under the semi-direct product operation. By
fixing a field Fq, and a collection of N invertible elements in Fq, {τ1, . . . , τN}, termed t-values, we
can define the right action of (CB(β), σβ) on the ordered pair (M,σ) ∈ GLN (Fq)× SN :

(M,σ) ⋆ (CB(β), σβ) =
(

M · σ
(

CB(β
)

) ↓t-values, σ ◦ σβ

)

,

where the ↓t-values indicates the polynomials are evaluated at the t-values. While the Laurent
polynomials which would naturally occur as entries of the colored Burau matrices would become
computationally unmanageable, the generators bi of BN have sparse colored Burau matrices, and,
hence, E-Multiplication can be evaluated very efficiently and rapidly.

The above discussion of an infinite group acting on a finite group necessitates the existence of
stabilizing elements in the group BN . With this in mind, we have the following:

Definition (Cloaking element) Let m ∈ GL(N,Fq) and σ ∈ SN . An element v in the pure braid
subgroup of BN (i.e., the permutation associated to v is the identity) is termed a cloaking element
of (m,σ) if it satisfies (m,σ) ⋆ v = (m,σ).

Thus a cloaking element will essentially disappear when E-Multiplication is evaluated. Since
stabilizing elements of a group action form a subgroup, the following proposition is immediate:

Proposition 4.1. The set of braids that cloak a specific ordered pair (m,σ) forms a subgroup of
BN .

It should be remarked that when cloaking elements are constructed in the manner above, such
elements only depend on the permutation σ. Thus, with a small abuse of language, we can say the
element v cloaks for the permutation σ without any ambiguity.

Definition (κ cloaking)Given an element β ∈ BN , the output of κ iterations of randomly inserting
cloaking elements into the braid β is defined to be a κ–cloaking of β and is denoted by κ(β).

5. WalnutDSATM Signature Generation and Verification

For β ∈ BN let P(β) denote the E-multiplication of β against the identity element, i.e.,

P(β) = (IdN , IdSN
) ⋆ β

where IdN is the N×N identity matrix and IdSN
is the identity element in the symmtric group SN .

The Signer’s private key consists of two random freely reduced braids w,w′ ∈ BN . The Signer’s
public key is

(

P(w), P(w′)
)

.

Fix a hash function H. To sign a message m ∈ {0, 1}∗ the Signer performs the following steps:

Digital Signature Generation:
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1. Compute H(m).

2. Generate cloaking elements v, v1, and v2 such that

− v cloaks (IdN , IdSN
),

− v1 cloaks P(w).

− v2 cloaks P(w′).

3. Generate the encoded message E(H(m)).

4. Compute Sig = R
(

κ
(

v1 · w
−1 · v · E(H(m)) · w′ · v2

) )

, which is a rewritten braid.

5. The final signature for the message m is the ordered pair (H(m), Sig).

Signature Verification: The signature (m, Sig) is verified as follows:

1. Generate the encoded message E(H(m)).

2. Evaluate P(E(H(m))).

3. Evaluate the E-Multiplication P(w) ⋆ Sig.

4. Test the equality

(5) Matrix
(

P(w) ⋆ Sig
)

?
= Matrix

(

P
(

E(H(m))
)

)

·Matrix
(

P
(

w′
)

)

,

where Matrix denotes the matrix part of the ordered pair in question, and the multiplication on
the right is the usual matrix multiplication. The signature is valid if and only if (5) holds and the
signature has length ≤ 2L where L is a certain positive integer such that all valid WalnutDSATM

signatures have length in the range [L, 2L].

6. The Merz–Petit Attack

Before describing the Garside based approach proposed by Merz–Petit [6] we review some of the
basic components Garside introduced to the field which date back to 1965. Recalling that the Artin
presentation of the N strand braid group has generators {b1, b2, . . . , bN−1}, subject to the following
relations:

bibi+1bi = bi+1bibi+1, (i = 1, . . . , N − 2),

bibj = bjbi, (|i− j| ≥ 2).

A brief summary of Garside’s approach [5] proceeds as follows. The fundamental braid ∆N , which
is defined to be

∆N = (b1 · · · bN−1)(b1 · · · bN−2) · · · (b1b2) b1,

satisfies the properties: for i = 1, . . . , N − 1,

bi∆ = ∆bN−i b−1
i = xi∆

−1,
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where xi is a positive word in the generators (i.e., a word without negative exponents). Focussing
on positive words in the braid generators, denoted B+

N enabled Garside to introduce an ordering

of positive words: given two positive words a, b ∈ B+
N then a ≤ b if there exists a c ∈ B+

N such

that ac = b. Further, given said a, b ∈ B+
N we can look for the smallest positive braid d such that

d ≤ a and d ≤ b. Garside proved such a smallest d exists and is unique (it is often denoted a ∧ b).
Garside’s seminal theorem states that every braid β can be uniquely expressed in the form

∆r A1 · · ·Ak,

where r ∈ Z, 1 < Ai < ∆, and Ai Ai+1 ∧∆ = Ai.

The underlying mathematical structure supporting the WalnutDSA protocol is the action of the
braid group on a direct product of a large finite matrix group and a symmetric group. The action
is inherently algorithmically difficult to reverse, and finding stabilizers (termed cloaking elements)
is likewise a difficult problem. However, specialized classes of cloaking elements can be explicitly
generated and it is, hence, possible to use them as a means of obscuring a braid: by inserting
sufficiently many cloaking elements the structure of the original braid cannot be recovered in a
tractable way.

The Merz and Petit universal forgery attack is a heuristic method that, using knowledge of a
valid signature of a message M , aims to generate a signature of a second message M ′ that will be
validated by a receiver. The decomposition algorithm introduced in their paper (which uses the
Garside canonical for as its basis) can be applied because a Walnut signature has the form

W1E(H(M))W2

and, critically, the braid element E(H(M)) is known to everyone. Knowledge of E(H(M)) allows
the algorithm to try to derive braids W ′

1,W
′
2 which satisfy the conditions Wi ≡ W ′

i (Mod ∆2), and
W1 ·W2 = W ′

1 ·W
′
2. Once a forger has said elements in place, the braid W ′

1 · E
(

H(M ′)
)

·W ′
2 will

verify as a signature of a message M ′.

In fact, knowledge of the entire E(H(M)) is not actually requisite. Were one to insert a single
concealed cloaking element into the encoding E(H(M)) it is still possible that the Ai’s in the
Garside normal form (see above) of said encoding still appear in the Garside normal form for the
signature. While the forgery in this case would be longer than the average signature, it might
be within the acceptable length range. Thus, in order to completely thwart the heuristic attack,
the signer must insert sufficiently many concealed cloaking elements into the braid E(H(M)) to
completely alter the Garside normal form. We have done significant testing and have concluded
that inserting cloaking elements every 10-15 generators will suffice. It should be noted that the
approaches to removing cloaking elements required the attacker to be able to reduce the problem
to a conjugacy search problem, Finding concealed cloaking elements in the encoded message does
not fit into that effort.
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7. Conclusion

WalnutDSA is a quantum-resistant, group-theoretic, public-key method. Merz and Petit pro-
posed a practical forgery attack using the Garside Normal Form of the signature that allowed them
to find commonalities with the Garside form of the encoded message, and using those commonal-
ities they could create a forgery. We have shown that by inserting a modest number of cloaking
elements in the encoded message we can change the resulting Garside form, rendering WalnutDSA
completely secure against this attack.
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