
DEFEATING THE HART, KIM, MICHELI, PASCUEL-PEREZ, PETIT, QUEK

ATTACK ON WALNUTDSATM

IRIS ANSHEL, DEREK ATKINS, DORIAN GOLDFELD, AND PAUL E. GUNNELLS
SECURERF CORPORATION

100 BEARD SAWMILL RD #350, SHELTON, CT 06484

Abstract. The Walnut Digital Signature Algorithm (WalnutDSA) is a group-theoretic, public-
key method that is part of the NIST Post-Quantum Cryptography standardization process. Prior
to its submission to NIST, Hart et al published an attack that, when it produces a signature
forgery, it is found to be orders of magnitude longer than a valid signature making it invalid

due to its length. In addition to being identified as a forgery by our current method, we show
that with a modest parameter-only increase we can block this attack to the desired security level
without a significant impact on the performance while making WalnutDSA completely secure
against this attack.

1. Introduction

The digital signature algorithm known as WalnutDSATM was introduced in [1]. It is a group
theoretic protocol which uses non linear operations in the Artin braid group BN [2] together with
operations in GL(N,Fq), the N ×N matrix group over the finite field Fq with q elements.

Recently, Hart et al [5] proposed a practical forgery attack on WalnutDSATM. As pointed out
by the authors, the attack can be defeated by increasing the parameter sizes, and that even in the
range where the attack is successful, it produces forgeries that are many orders of magnitude larger
than the signatures allowed in the protocol, i.e., the attack is blocked because the WalnutDSATM

protocol specifies a length limit on the signatures.

We show in this paper that the run time of the attack is exponential and can be easily defeated
while still retaining the high efficiency and low power consumption advantages of WalnutDSATM for
constrained devices. For example, the attack can be completely thwarted and a 2128 (respectively
2256) security level can be maintained by running WalnutDSATM on the braid group B10 and the
finite field FM31

, where M31 is the Mersenne prime 231 − 1 (respectively B10,M61).

2. Brief Introduction to WalnutDSATM

A core tool in group theoretic cryptography is the fact that an element of a group can be
rewritten (using the relations in the group) so that the original expression of the element cannot
be recovered. Consider, for example (for N ≥ 2), the N -strand braid group with Artin generators

1

{b1, b2, . . . , bN−1}, subject to the following relations:

bibi+1bi = bi+1bibi+1, (i = 1, . . . , N − 2),(1)

bibj = bjbi, (|i− j| ≥ 2).(2)

Let R : BN → BN denote a rewriting algorithm. Well known examples are the Birman-Ko-Lee
canonical form [3] or the Dehornoy handle reduction algorithm [4]. The security of WalnutDSATM

is based on the hard problems known as Reversing E-multiplication (REM) as well as the cloaked
conjugacy search problem. E-multiplication, in its simplest form, is a function which on input
of a braid element in BN outputs a pair consisting of a matrix in GL(N,Fq) together with a
permutation in SN . E-multiplication is based on the colored Burau representation of the BN [6].
Cloaking elements of BN are defined to be braids whose output on E-multiplication is the pair
consisting of the identity matrix and the identity permutation.

Fix a hash function H. In brief, the protocol begins with a message m which is first hashed to
H(m) and then encoded as an element E(H(m)) ∈ BN . The signer’s private key consists of two
nontrivial elements in BN , denoted w,w′ (satisfying certain technical properties), and the signer’s
public key will be an N ×N matrix over a finite field together with a permutation on N symbols,
i.e., an element in the symmetric group SN . The signed message will be a braid in BN of the form

R
(

v1 · w
−1 · v · E(H(m)) · w′ · v2

)

,

where R denotes a rewriting algorithm on BN and v, v1, v2 ∈ BN are appropriate cloaking elements.
Signature verification can be executed rapidly by performing E-multiplication on the signature.

3. Colored Burau Representation of the Braid Group

Each braid β ∈ BN determines a permutation in SN (group of permutations of N letters)
as follows: For 1 ≤ i ≤ N − 1, let σi ∈ SN be the ith simple transposition, which maps i →
i + 1, i + 1 → i, and leaves {1, . . . , i − 1, i + 2, . . . , N} fixed. Then σi is associated to the Artin
generator bi. Further, if β ∈ BN is written as in (??), we take β to be associated to the permutation
σβ = σi1 · · ·σik . A braid is called pure if its underlying permutation is trivial (i.e., the identity
permutation).

Let Fq denote the finite field of q elements, and for variables t1, t2, . . . , tN , let

Fq[t1, t
−1
1 , . . . , tN , t−1

N]

denote the ring of Laurent polynomials in t1, t2, . . . , tN with coefficients in Fq. Next, we introduce
the colored Burau representation

ΠCB : BN → GL
(

N,Fq[t1, t
−1
1 , . . . , tN , t−1

N]
)

× SN .

First, we define the N × N colored Burau matrix (denoted CB) of each Artin generator as
follows[?].

2

(3) CB(b1) =

−t1 1
1

1
. . .

1

,

For 2 ≤ i ≤ N − 1, the matrix CB(bi) is defined by

(4) CB(bi) =

1
. . .

ti −ti 1
. . .

1

,

where the indicated variables appear in row i, and if i = 1 the leftmost t1 is omitted.

We similarly define CB(b−1
i) by modifying (4) slightly:

CB(b−1
i) =

1
. . .

1 − 1
ti+1

1
ti+1

. . .

1

,

where again the indicated variables appear in row i, and if i = 1 the leftmost 1 is omitted.

Recall that each bi has an associated permutation σi. We may then associate to each braid
generator bi (respectively, inverse generator b−1

i) a colored Burau/permutation pair (CB(bi), σi)

(resp., (CB(b−1
i), σi)). We now wish to define a multiplication of such colored Burau pairs. To

accomplish this, we require the following observation. Given a Laurent polynomial f(t1, . . . , tN)
in N variables, a permutation in σ ∈ SN can act (on the left) by permuting the indices of the
variables. We denote this action by f 7→ σf :

σf(t1, t2, . . . , tN) = f(tσ(1), tσ(2), . . . , tσ(N)).

We extend this action to matrices over the ring of Laurent polynomials in the ti by acting on each
entry in the matrix, and denote the action by M 7→ σM . The general definition for multiplying two
colored Burau pairs is now defined as follows: given b±i , b

±

j , the colored Burau/permutation pair

associated with the product b±i · b±j is

(CB(b±i), σi) · (CB(b±j), σj) =
(

CB(b±i) · (
σiCB(b±j)), σi · σj

)

.

We extend this definition to the braid group inductively: given any braid

β = bǫ1i1 b
ǫ2
i2
· · · bǫkik ,

we can define a colored Burau pair (CB(β), σβ) by

(CB(β), σβ) = (CB(bǫ1i1)·
σi1CB(bǫ2i2)·

σi1
σi2CB(bǫ3i3)) · · · σi1

σi2
···σik−1CB(bǫkik), σi1σi2 · · ·σik).

3

The colored Burau representation is then defined by

ΠCB(β) := (CB(β), σβ).

One checks that ΠCB satisfies the braid relations and hence defines a representation of BN .

4. E-Multiplication and Cloaking Elements

In brief, E-Multiplication is an action of a group of ordered pairs associated with BN on a direct
product of two groups. Given an element β ∈ BN , we can associate with β both the colored Burau
matrix CB(β) (whose entries are Laurent polynomials in N variables) and the natural permutation
σβ of the braid which is an element in SN . Since permutations themselves act on the colored Burau
matrices, the ordered pairs (CB(β), σβ) form a group under the semi-direct product operation. By
fixing a field Fq, and a collection of N invertible elements in Fq, {τ1, . . . , τN}, termed t-values, we
can define the right action of (CB(β), σβ) on the ordered pair (M,σ) ∈ GLN (Fq)× SN :

(M,σ) ⋆ (CB(β), σβ) =
(

M · σ
(

CB(β
)

) ↓t-values, σ ◦ σβ

)

,

where the ↓t-values indicates the polynomials are evaluated at the t-values. While the Laurent
polynomials which would naturally occur as entries of the colored Burau matrices would become
computationally unmanageable, the generators bi of BN have sparse colored Burau matrices, and,
hence, E-Multiplication can be evaluated very efficiently and rapidly.

The above discussion of an infinite group acting on a finite group necessitates the existence of
stabilizing elements in the group BN . With this in mind, we have the following:

Definition (Cloaking element) Let m ∈ GL(N,Fq) and σ ∈ SN . An element v in the pure braid
subgroup of BN (i.e., the permutation associated to v is the identity) is termed a cloaking element
of (m,σ) if it satisfies (m,σ) ⋆ v = (m,σ).

Thus a cloaking element will essentially disappear when E-Multiplication is evaluated. Since
stabilizing elements of a group action form a subgroup, the following proposition is immediate:

Proposition 4.1. The set of braids that cloak a specific ordered pair (m,σ) forms a subgroup of
BN .

It should be remarked that when cloaking elements are constructed in the manner above, such
elements only depend on the permutation σ. Thus, with a small abuse of language, we can say the
element v cloaks for the permutation σ without any ambiguity.

Definition (κ cloaking)Given an element β ∈ BN , the output of κ iterations of randomly inserting
cloaking elements into the braid β is defined to be a κ–cloaking of β and is denoted by κ(β).

5. WalnutDSATM Signature Generation and Verification

For β ∈ BN let P(β) denote the E-multiplication of β against the identity element, i.e.,

P(β) = (IdN , IdSN
) ⋆ β

4

where IdN is the N×N identity matrix and IdSN
is the identity element in the symmtric group SN .

The Signer’s private key consists of two random freely reduced braids w,w′ ∈ BN . The Signer’s
public key is

(

P(w), P(w′)
)

.

Fix a hash function H. To sign a message m ∈ {0, 1}∗ the Signer performs the following steps:

Digital Signature Generation:

1. Compute H(m).

2. Generate cloaking elements v, v1, and v2 such that

− v cloaks (IdN , IdSN
),

− v1 cloaks P(w).

− v2 cloaks P(w′).

3. Generate the encoded message E(H(m)).

4. Compute Sig = R
(

κ
(

v1 · w
−1 · v · E(H(m)) · w′ · v2

))

, which is a rewritten braid.

5. The final signature for the message m is the ordered pair (H(m), Sig).

Signature Verification: The signature (m, Sig) is verified as follows:

1. Generate the encoded message E(H(m)).

2. Evaluate P(E(H(m))).

3. Evaluate the E-Multiplication P(w) ⋆ Sig.

4. Test the equality

(5) Matrix
(

P(w) ⋆ Sig
)

?
= Matrix

(

P
(

E(H(m))
)

)

·Matrix
(

P
(

w′
)

)

,

where Matrix denotes the matrix part of the ordered pair in question, and the multiplication on
the right is the usual matrix multiplication. The signature is valid if and only if (5) holds and the
signature has length ≤ 2L where L is a certain positive integer such that all valid WalnutDSATM

signatures have length in the range [L, 2L].

6. The Hart, Kim, Micheli, Pascuel-Perez, Petit, Quek Attack

The Hart et al attack [5] is a universal forgery attack that works in the special case when the two
private keys w, w′ are equal. The attack is based on a solution of the group factorization problem
in GL(N,Fq).

Definition (Group Factorization Problem) Let G be a finitely generated group with generators
{g1, . . . , gr}. Given h ∈ G find a small integer L and sequences (m1, . . . ,mL) ∈ {1, 2, . . . , r}L and

5

(ǫ1, . . . ǫL) ∈ {±1}L such that

h =

L
∏

i=1

gǫimi
.

We now explain how a solution to the group factorization problem can be used to forge signatures.
Assume an attacker is in possession of many messages mi and WalnutDSATM signatures si with
i ∈ I in a finite indexing set. Let E(H(mi)) denote the encoding of the hash of the message mi

into the braid group BN and define gi := Matrix
(

P(E(H(mi))
)

∈ GL(N,Fq).

Assume that the attacker wants to forge a signature for a messagem. Let h = Matrix
(

P(E(H(m))
)

.

Suppose the attacker can find ǫij ∈ {±1} and a small positive integer L such that

h =

L
∏

j=1

g
ǫij
ij

where ij ∈ I for j = 1, 2, . . . , L. Then as shown in [5] a valid signature for m is given by s =
L
∏

j=1

s
ǫij
ij

.

The basic strategy for the attack is to build forgeries iteratively using a nested sequence of
subgroups. In particular, there is a chain of subgroups A1 ⊂ A2 ⊂ · · · ⊂ AN−1 in GL(N,Fq), and
a corresponding sequence of subgroups P1 ⊂ P2 ⊂ · · · ⊂ PN−1 of the braid group BN . The two are
related in that the matrix part under E-multiplication of any braid in Pi lands in Ai. The main step
of the attack attempts to improve a partial solution of the problem in Ai, Pi to a more complete one
in the smaller subgroups Ai−1, Pi−1. An essential role in building and improving solutions is played
by the distinguished point method, which is a general collision attack on all one-way functions that
has nothing to do with E-multiplication in particular.

7. Defeating the attack

In the Hart et al paper [5], the time complexity, memory complexity, and signature length are
carefully estimated. Assume we are running WalnutDSATM on the braid group Bn and finite field
Fq. They show that the running time complexity of the algorithm is

≈ 2 · γ · q
N−1

2 ,

the memory complexity is

log2(q) ·N
2q

N−1

2 ,

while the forged signature length is

ℓ · q
(

logγ(q)
)2N−3

N ! (N − 2)!,

where ℓ is the length of the original signature. Here the constant γ ≥ 1 can be chosen by the attacker.
They point out that if the parameters N, q are chosen as q = 216 and N = 14 then their attack is
defeated with time complexity 2100. It is clear that if we choose q = M31 = 231 − 1, N = 10 then
the attack is completely defeated with security level > 2128 while if we choose q = M61 = 261 − 1,
N = 10, then we achieve security level at least 2256. Even with much smaller choices of q,N the
attack is still defeated because the forged signatures produced are significantly longer than the
actual signatures.

6

Increasing N and q does affect the performance of WalnutDSA. In a software implementation,
each E-Multiplication step requires N multiplications and 2N additions within Fq. This means
that increasing N from 8 to 10 changes the number of basic operations from 8 to 10 multiplications
and 16 to 20 additions, a 25% increase in the number of operations per E-Multiplication.

Increasing N also affects the length of the signature. The length increase can be obtained
heuristically through testing. Using N = 8 the average length of a signature was 1399 Artin
generators whereas increasing to N = 10 increased the length to 1909, a 36% increase in signature
length (and an equivalent increase in signature verification time due to the 36% increase in the
number of E-Multiplications required).

It should be noted that the increase of N also affects the signature storage size, because with
N = 8 each generator only needs 4 bits, whereas 5 bits are required for N = 10. This increases the
storage requirements by an additional 25%, for a total storage increase of 70%.

Increasing N and q affect the public key size, because the matrix is an N ×N matrix over Fq,
which requires N2log2(q) bits for each matrix. Increasing from N = 8, q = 32 to N = 10, q = M31

results in an increase in public key matrices from 320 to 3100 bits each (a 10x increase). However,
this 10x increase still results in public keys significantly shorter than the majority of NIST signature
candidates.

Finally, increasing q from 32 toM31 does change the implementation of operations in Fq. Whereas
on F32 the operations could be implemented as a table lookup, using M31 no longer provides for that
option. The primary consideration for performance of Fq is the state of the multiplier. Specifically,
if the platform has a 32 × 32 → 64 bit multiplier then the operation can be performed in only
two instructions (multiplication and reduction). Some platforms don’t provide this, but do provide
a 32 × 32 → 32(high) and 32 × 32 → 32(low) operation. Other platforms truncate the result.
And finally, some very small platforms don’t provide for a 32-bit multiplier at all. The resulting
performance degredation is determined by the available multiplier. We note that even on small
platforms like an ARM Cortex M4, the multiplier is sufficient to compute the result in the single
multiply instruction. The use of Mersenne primes like M31 affords a simple reduction methodology,
which is simply a shift, addition, and possibly overflow subtraction.

All in, the signature verification times of WalnutDSA on the NIST test platform increased from
160,000 to 230,000 cycles due to these changes, a performance degredation of only 43%.

8. Conclusion

WalnutDSA is a group-theoretic, public-key method that is part of the NIST Post-Quantum
Cryptography standardization process. Hart et al published a practical signature forgery attack
that could produce a signature forgery that is orders of magnitude longer than a valid signature
(which is considered invalid due to its length). We have shown that with a modest parameter
increase from N = 8 to N = 10 and from q = 32 to q = M31 = 231 − 1 we can block this attack to
the desired security level without a significant decrease in performance of WalnutDSA, rendering
WalnutDSA completely secure against this attack.

Specifically we find that with these changes the signature storage size increased by 70%, the
public key storage increased by 10x, and on the NIST test platform signature verification time only
increased by 43%. Moreover, WalnutDSA still runs efficiently on all embedded platforms tested.

7

References

[1] Anshel, I., Atkins, D., Goldfeld, D., Gunnells, P.E.:WalnutDSATM : a quantum-resistant digital signature algo-

rithm. Cryptology ePrint Archive, Report 2017/058 (2017).

[2] E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101–126.

[3] J. Birman; K. H. Ko; S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Adv.
Math. 139 (1998), no. 2, 322–353.

[4] P. Dehornoy, A fast method for comparing braids, Adv. Math. 125 (1997), no. 2, 200–235.

[5] Hart D., Kim D., Micheli G., Pascual-Perez G., Petit C., Quek Y. (2018) A Practical Cryptanalysis of WalnutDSA

TM. In: Abdalla M., Dahab R. (eds) Public-Key Cryptography – PKC 2018. PKC 2018. Lecture Notes in
Computer Science, vol 10769. Springer, Cham.

[6] H.R. Morton, The multivariable Alexander polynomial for a closed braid, Low-dimensional topology, (Funchal,

1998), 167–172, Contemp. Math., 233, Amer. Math. Soc., Providence, RI, 1999.

Email address: IANSHEL@SECURERF.COM, DATKINS@SECURERF.COM, DGOLDFELD@SECURERF.COM, PGUNNELLS@SECURERF.COM

8

