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Abstract. Number theoretic public-key solutions, currently used in many ap-
plications worldwide, will be subject to various quantum attacks, making them

less attractive for longer-term use. Certain group theoretic constructs are now
showing promise in providing quantum-resistant cryptographic primitives, and

may provide suitable alternatives for those looking to address known quan-

tum attacks. In this paper, we introduce a new protocol called a Meta Key
Agreement and Authentication Protocol (MKAAP) that has some characteris-

tics of a public-key solution and some of a shared-key solution. Specifically, it

has the deployment benefits of a public-key system, allowing two entities that
have never met before to authenticate without requiring real-time access to a

third-party, but does require secure provisioning of key material from a trusted

key distribution system (similar to a symmetric system) prior to deployment.
We then describe a specific MKAAP instance, the Ironwood MKAAP, discuss

its security, and show how it resists certain quantum attacks such as Shor’s

algorithm or Grover’s quantum search algorithm. We also show Ironwood
implemented on several “internet of things” (IoT devices), measure its perfor-

mance, and show how it performs significantly better than ECC using fewer
device resources.

1. Introduction. Group theoretic cryptography is a relatively new discipline that
seeks to bring the core algorithmically difficult problems in combinatorial group
theory into the cryptographic landscape. Overviews can be found in the two recent
monographs [13], [23]. Among the first generation of group theoretic based key
agreement protocols to be introduced, including [4] and [18], were those based of
the conjugacy search problem. The attacks on the conjugacy search problem, such
as those appearing in [10], [11], [16] suggest that these types of schemes may not
be practical over braid groups in low-resource environments. To overcome these
concerns, we introduce the notion of a Meta Key Agreement and Authentication
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Protocol (MKAAP) (§4). This protocol has many of the properties and advantages
of a public-key method and requires very limited distribution of certain private keys.

In this paper we present an MKAAP based on a conjectured quantum-resistant
one-way function based in braid group theory. To date, this MKAAP is immune
to all known attacks introduced in group theoretic cryptography and delivers linear
time performance on low-footprint processors. As the IoT becomes ubiquitous,
the need to secure low-footprint processors can be achieved using group theoretic
cryptography via the MKAAP introduced below.

Previous Work. In 2006 [1], I. Anshel (IA) and D. Goldfeld (DG) with M. Anshel
and S. Lemieux introduced a key agreement protocol based in group theory (specif-
ically the braid group) that has withstood several attacks over the past decade.
First, Myasnikov–Ushakov [22] determined that if braids are too short then one
can find the conjugating factor and use that to break the system. However, it was
pointed out by P. Gunnells (PG)[15] that in practice the braids are long enough
that this attack can never succeed: the method in [22] is analogous to using Fer-
mat’s technique to factor short RSA keys, which becomes impractical at secure
sizes. Second, Kalka–Teicher–Tsaban [17] described a linear algebra attack (KTT)
that would allow an attacker to determine part of the private key data. DG and
PG[12] showed, however, that this attack succeeds only on a class of weak keys, and
that choosing the private key data more carefully defeats this attack. Subsequent
to the KTT attack, Ben-Zvi–Blackburn–Tsaban [7], using all of the available public
information of the protocol, were able to reconstruct the shared secret, but only af-
ter a large precomputation and several hours of runtime. We later showed [2] that
the work necessary to carry out the attack increases as the size of the permutation
order grows as well as the size of the braid group.

Some have (incorrectly) questioned the security of Ironwood based on the analysis
of other group theoretic cryptographic methods. We remark that the current review
of WalnutDSATM [3], a group theoretic based digital signature, does not apply
to the Ironwood protocol. In particular the (exponential) attack on reversing E-
multiplication requires data not available to an attacker, and, hence, the underlying
hard problems considered in these approaches do not impact the Ironwood security
(see §VI).

Our Contribution. This paper introduces the Ironwood MKAAP (Ironwood);
its security is based on hard problems in group theory. Ironwood leverages the
conjectured one-way function, E-Multiplication, but creates a different construction
that removes some of the public information required to mount any of the previous
attacks. In addition to being immune from previous attacks, it can be argued that
Ironwood is resistant to the current generation of quantum attacks. Specifically,
Shor’s quantum algorithm[24] – which has been shown to break RSA, ECC, and
several other public-key crypto systems – does not seem applicable for attacking
Ironwood because the underlying group theoretic foundation of Ironwood is an
infinite non-commutative group. Further, Grover’s quantum search algorithm[14] is
not as impactful on Ironwood as it is on many protocols because the running time
of Ironwood is linear in the key length and security strength, and, hence, the need
to double the security level amounts to doubling the execution time. This stands in
stark contrast to the rapid increase in execution time for standard protocols when
the lengths of the private keys are doubled.
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This paper begins with a review of the braid group, the colored Burau representa-
tion, and E-Multiplication. With these tools in place, we introduce the concept of a
meta key agreement and authentication protocol (MKAAP), and present Ironwood.
A discussion of security and our implementation experience follows.

2. Colored Burau representation of the braid group. Let BN denote the
braid group on N strands, with Artin presentation

BN =〈
b1, b2, . . . , bN−1

∣∣∣ bibjbi = bjbibj for |i− j| = 1, bibj = bjbi for |i− j| ≥ 2
〉
.

Let SN be the permutation group on N letters. Every element β ∈ BN de-
termines a permutation σβ ∈ SN as follows. For 1 ≤ i < N , let σi ∈ SN be
simple transposition that exchanges i and i+ 1 and leaves the remaining elements
{1, . . . , i − 1, i + 2, . . . , N} fixed. We write σbi = σi. Then if β = bε1i1 b

ε2
i2
· · · bεkik ,

(with εi = ±1), we have σβ = σi1 · · ·σik .
The colored Burau representation of the braid group was introduced by Morton in

[20] in 1998, but we shall make use of a variation of Morton’s original representation.
Associate to each Artin generator bi, with 1 ≤ i < N , a colored Burau matrix
CB(bi) where

CB(b1) =



−t1 1
. . .

1
. . .

1

 ,

CB(bi) =



1
. . .

ti −ti 1
. . .

1


(
for 1 < i < N

)
.

(1)

We similarly define CB(b−1i ) by modifying (1) slightly:
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CB(b−11 ) =



− 1
t2

1
t2
. . .

1
. . .

1

 ,

CB(b−1i ) =



1
. . .

1 − 1
ti+1

1
ti+1

. . .

1


(
for 1 < i < N

)
.

(2)

Thus, each braid generator bi (respectively, inverse generator b−1i ) determines a

colored Burau/permutation pair (CB(bi), σi) (resp., (CB(b−1i ), σi)). We now define
a multiplication of colored Burau pairs such that the natural mapping from the braid
group to the group of matrices with entries in the ring of Laurent polynomials in
the ti is a homomorphism.

Given a Laurent polynomial

f(t1, . . . , tN ) ∈ Z[t±11 , t±12 , . . . , t±1N ],

a permutation in σ ∈ SN can act (on the left) by permuting the indices of the
variables. We denote this action by f 7→ σf :

σf(t1, t2, . . . , tN ) := f(tσ(1), tσ(2), . . . , tσ(N)).

Let M be the N × N matrices over Z[t±11 , t±12 , . . . , t±1N ]. We extend this action to
M by acting on each entry in a matrix, and use the same notation for the action.
The general definition for multiplying two colored Burau pairs is now defined as
follows from the definition of the semidirect product M o SN . Given b±i , b

±
j , the

colored Burau/permutation pair associated with the product b±i · b
±
j is

(CB(b±i ), σi) ◦ (CB(b±j ), σj) =
(
CB(b±i ) · (σiCB(b±j )), σi · σj

)
.

Given any braid

β = bε1i1 b
ε2
i2
· · · bεkik ,

with εi = ±1 for 1 ≤ i ≤ k, the colored Burau pair (CB(β), σβ) is given by

(CB(β), σβ) =(
CB(bε1i1 ) ·σi1 CB(bε2i2 ) ·σi1σi2 CB(bε3i3 )) · · · σi1σi2 ···σik−1CB(bεkik ), σi1σi2 · · ·σik

)
The colored Burau representation is then defined by

ΠCB(β) := (CB(β), σβ).

One checks that ΠCB satisfies the braid relations and, hence, defines a representa-
tion of BN .
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3. E-Multiplication. E-Multiplication was first introduced in [1] as a core build-
ing block for a range of cryptographic constructions. We recall its definition here.

Let Fq denote the finite field of q elements. A set of T -values is defined to be a
collection of non-zero field elements:

{τ1, τ2, . . . , τN} ⊂ F×q .

Given a set of T -values, we can evaluate any Laurent polynomial f(t1, t2, . . . , tN )
to obtain an element of Fq:

f(t1, t2, . . . , tN ) ↓t-values := f(τ1, τ2, . . . , τN ).

We extend this notation to matrices over Laurent polynomials in the obvious way.
With all these components in place, we can now define E-Multiplication. By

definition, E-Multiplication is an operation that takes as input two ordered pairs,

(M,σ0), (CB(β), σβ),

where β ∈ BN and σβ ∈ SN as before, and where M ∈ GL(N,Fq), and σ0 ∈ SN .
We denote E-Multiplication with a star: ?. The result of E-Multiplication, denoted

(M ′, σ′) = (M,σ0) ? (CB(β), σβ),

will be another ordered pair (M ′, σ′) ∈ GL(N,Fq)× SN .
We define E-Multiplication inductively. When the braid β = b±i is a single

generator or its inverse, we put

(M,σ0) ?
(
CB(b±i

)
, σb±i

) =(
M · σ0

(
CB(b±i

)
) ↓t-values, σ0 · σb±i

)
.

In the general case, when β = bε1i1 b
ε2
i2
· · · bεkik , we put

(M,σ0)?(CB(β), σβ) = (M,σ0)?(CB(bε1i1 ), σbi1 )?(CB(bε2i2 ), σbi2 )?· · ·?(CB(bεkik ), σbik ),

(3)
where we interpret the right of (3) by associating left-to-right. One can check that
this is independent of the expression of β in the Artin generators.

4. Meta Key Agreement and Authentication Protocol (MKAAP) . We
now introduce the notion of a meta key agreement and authentication protocol,
which has many of the features of a public-key cryptosystem. While the MKAAP
has many public-key cryptosystem features, it is not a true public-key cryptosys-
tem. Specifically, while it does initially require secure provisioning of each device by
a Trusted Third Party (TTP), after they are provisioned devices can authenticate
to each other offline without further support. By device, we mean a Probabilis-
tic Polynomial-Time Turing Machine (PPTM) that can execute a cryptographic
protocol and is capable of transmitting and receiving messages.

Definition (MKAAP) Assume there is a network consisting of a Home Device
(HD) and a set of other devices Di, i = 1, 2, 3, . . . that communicate with the HD
over an open channel.1 Assume that there is a TTP which has distributed secret
information to the HD and the other devices. An MKAAP is an algorithm with the
following properties:

1While the open channel may be a unicast or multicast medium, authentication between HD
and Di is 1:1.
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• The MKAAP allows the HD to authenticate (and/or be authenticated by) and
obtain a shared secret with any Di over an open channel.

• It is infeasible for an attacker, eavesdropping on the open communication chan-
nel between the HD and a device Di, to obtain the shared secret assuming the at-
tacker does not know the secret information distributed by the TTP.

• The private keys of the Di are provided by the TTP, fixed, and are not known
to the HD. The TTP may update the keys over time.

• The private key of the HD may be ephemeral and is not known to any of the
Di’s, or it may be provided by the TTP.

• If an attacker can break into one of the devices Di and obtain its private key,
then only the security of that particular device is breached; all other devices remain
secure.

• An attacker is assumed to be a Probabilistic Polynomial-Time Turing Machine
(PPTM) and/or a machine capable of running a quantum method like Shor[24] or
Grover[14], capable of passive eavesdropping on all communications between the HD
and Di, and can actively attempt to impersonate an HD or Di, using the other side
as an oracle.

There are many benefits of an MKAAP system is over a pure symmetric solution.
The MKAAP requires the endpoints to be provisioned similarly to a symmetric so-
lution. However, in a symmetric solution, the HD must be provisioned with the keys
for every Di, or at least must have real-time access to the TTP to obtain such keys.
In MKAAP, however, the HD can be provisioned before keys for the Di are even
generated, and the HD has no need to contact the TTP. This allows for additional
devices to be created and provisioned after the HD is already deployed without
requiring any changes to the HD. This would not be possible with a symmetric
solution.

5. Description of Ironwood MKAAP. We now describe the Ironwood MKAAP.
It may be assumed that the following information is publicly known.

Public Information:

• The braid group BN for a fixed even integer N ≥ 10.
• A finite field Fq of q ≥ 7 elements.2

• A non-singular matrix m0 ∈ GL(N,Fq).
• The operation of E-multiplication based on BN and Fq.

Next, we discuss the initial distribution of secret information by the TTP.

2The parameters N and q are chosen to meet the desired security level given the best-known
attack (which is currently brute force). See Section 7.
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TTP Data Generation and Distribution:

 
 
 
 

TTP generates 
 

𝐶" = 	 〈𝑧𝛼(𝑧)*|	𝑖 = 1,… , 𝑟〉, 	𝐶2 = 	 〈𝑧	𝛾(𝑧)*|	𝑖 = 1,… , 𝑟〉	, 
 

𝑇 = {𝜏*, … , 𝜏7} ⊂ 𝔽;,			𝑚= ∈ GLA𝑁, 𝔽;C,	 
 

	𝛽( ∈ 𝐶2, 𝐶( = E 𝑐G,(𝑚=
G,

7)*

GH=	

	 

 
Cert(: (𝐶(,id) ⋆ 𝛽( = 	 (𝐶(𝑀(, 𝜎() 

 
 

HD: provisioned data   
 
 

𝐶" = 	 〈𝑧𝛼(𝑧)*|	𝑖 = 1,… , 𝑟〉, 
 
𝑇 = {𝜏*, … , 𝜏7} ⊂ 𝔽;,			𝑚= ∈ GLA𝑁, 𝔽;C 

𝑫(: provisioned data  
 

Private keys: 𝐶( 
 
Public key: (𝐶(𝑀(, 𝜎() ∈ 	 Cert(    

 
 

Figure 1. Ironwood Data Flows

The TTP begins by generating two sets of braid elements {α1, . . . , αr}, {γ1, . . . , γr}
such that αiγj = γjαi. By conjugating these sets of elements by a fixed braid ele-
ment z, the TTP creates two sets of commuting conjugates Cα, Cγ ⊂ BN :3

Cα = {zα1z
−1, zα2z

−1, . . . , zαrz
−1},

Cγ = {zγ1z−1, zγ2z−1, . . . , zγrz
−1}.

In addition to the sets Cα, Cγ conjugates above, the TTP produces a fixed set of
T -values:

T = {τ1, τ2, . . . , τN} ⊂ F×q , (τi 6= 1).

The TTP writes the first set of conjugates Cα and the set of T -values into the
memory of the HD. After being provisioned with Cα and T the HD functions inde-
pendently of the TTP, and is capable of producing both its own private and public
keys. No further interaction is necessary between the TTP and the HD.

Next, the TTP creates braid words βi ∈ BN (for i = 1, 2, . . .), which are random
products of conjugates from the second set Cγ chosen according to the uniform

3The number r of braids in each set is chosen for a time/space/keysize tradeoff, but must
satisfy r ≥ 2. A larger r requires more time to generate the conjugates and more space to store

them, but on the other hand requires shorter random words in them to generate keys.
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distribution. The TTP then creates colored Burau pairs (βi, σi), where σi is the
permutation associated to βi. For each such (βi, σi), the TTP chooses a random
non-singular matrix

Ci =

N−1∑
k=0

ck,im
k
0 ,

(
with ck,i ∈ Fq

)
,

where the ck,i ∈ Fq are chosen according to the uniform distribution. The TTP
then uses the T -values to perform the E-multiplication

Pubi := (Ci, Id) ? (βi, σi) = (CiMi, σi). (4)

In (4), Id denotes the identity permutation and Mi ∈ GL(N,Fq). We remark that
the one-way nature of E-multiplication makes it impossible for the TTP to choose
the public key for Di prior to specifying the private key for Di. Thus, the protocol
is entirely distinct from any identity-based protocol. Finally, the TTP creates a
certificate Certi that contains a digitally signed copy of Pubi and writes Certi and
Ci into the memory of Di, the ith device in the network. By using a digital signature
to sign the public key of Di and to generate Certi, we eliminate concerns about the
man-in-the-middle attack.

After all the data is created, the TTP must securely provision the Home Device
and Other Devices with their respective data. Figure 1 summarizes the data created
by the TTP, and how it is distributed to the devices.

Upon completion of the TTP distribution, authentication and key agreement
between the HD and the other devices in the network may begin. A key assumption
is that there is only one HD and that the secret information on the HD is secure
and cannot be obtained by any adversary. The protocol proceeds as follows:

Ironwood Authentication and Key Agreement Protocol

Step 1: The device Di sends HD the certificate Certi, which contains a copy of
Pubi that has been digitally signed by the TTP. Here Pubi is the public key of Di

and the matrix Ci is the private key of Di.

Step 2: The HD generates two ephemeral non-singular matrices

C =

N−1∑
k=0

ckm
k
0 , C ′ =

N−1∑
k=0

c′km
k
0 .

Here ck, c
′
k ∈ Fq are chosen just as the coefficients in the creation of the Ci were.

Step 3: The HD generates an ephemeral permutation σ and two ephemeral
braids β, β′; the latter are random words in Cα as before, and we require that β and
β′ have the same permutation σ = σβ = σβ′ . This can be accomplished efficiently
by first generating a braid using the first half of conjugates, and, then create the
second braid by using the same set of conjugates and adding choices from the set of
conjugates where αi are purebraids. Alternatively, if none of the αi are pure, one
can simply take a word in the HD’s conjugates to a sufficiently high power to make
it pure.
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public key = 𝐶*𝑀*	𝑀-.	𝐶-. 
 

---------------------------------------------------- 
 

§ Receive Cert": public key of  
(𝐶"𝑀", 𝜎") ∈ 	 Cert" 

§ Obtain 2nd component of HD 
public key: 𝑠, where 

𝑠	 = 	 @A
B
C
DE
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F𝐶𝐶"𝑀"	, 𝜎"G ⋆ 𝛽,	 

§ Transmit: (𝐶*𝑀*	𝑀-.	𝐶-., 𝑠)  
---------------------------------------------------- 

§ Obtain the shared secret: 𝑠′, where 

𝑠′	 = 	 @A
B
C
DE

Col. matrix part of 
F𝐶′𝐶"𝑀"	, 𝜎"G ⋆ 𝛽′	 
 

Cert"  

(𝐶′	𝑀′	𝑀-.𝐶-., 𝑠)	 

Figure 2. Ironwood Protocol Flow

Remark: After Step 3 the construction of the ephemeral part of the private key
of the HD, which consists of C,C ′, β, β′, σ, is complete. The T -values and the set
of conjugates Cα are also part of the private key of the HD and must be treated as
confidential information.

Step 4: Using the T -values, the HD computes the following two E-multiplications:

(C, Id) ? (β, σ) := (CM,σ),

(C ′, Id) ? (β′, σ) := (C ′M ′, σ).

Step 5: The HD has received Pubi = (CiMi, σi) in the signed digital signature
sent by Di. Next, using the T -values, the HD computes the following two E-
multiplications:

(CCiMi, σi) ? (β, σ) := (Y, σiσ),

(C ′CiMi, σi) ? (β′, σ) := (Y ′, σiσ).

Step 6: The HD computes

s = (N/2)
th

column of the matrix Y,

s′ = (N/2)
th

column of the matrix Y ′.

Step 7: The HD sends Di the pair(
C ′M ′M−1C−1, s

)
.
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Step 8: The device Di receives the matrix C ′M ′M−1C−1 and the vector s and
verifies that at least one half of the entries of s and the matrix are not zero (which
can be done in N steps and N2 steps, respectively). These checks are to prevent a
class of invalid public-key attacks. If at least 1/2 of the entries of either s or the
matrix are zero then the protocol halts. Otherwise, the device Di computes the
matrix and vector multiplications:

s′ = Ci
(
C ′M ′M−1C−1

)
C−1i · s.

The device Di can do this since it knows its private key Ci and has received
C ′M ′M−1C−1 and s from the HD. Further, if s = s′ the protocol should also
halt.

Shared Secret: The shared secret is the column vector s′, which is now known
to both HD and Di.

Step 9: The final step is to authenticate the device Di. Mutual authentication
can be established by checking that the HD and Di have obtained the same shared
secret. This is because the device Di has sent the HD the signed certificate contain-
ing a copy of its public key and the unique HD is the only entity with access to the
secret conjugate material and T -values enabling it to produce the correct response.
Methods for doing this, such as using a hash to create a validation value or using a
nonce and Message Authentication Code (MAC) in a challenge/response protocol,
are well known, so we do not reproduce them here.

Figure 2 gives a diagram that compactly summarizes how HD and Di arrive at
the shared secret s = s′.

At this point the devices can mutually authenticate. The HD can authenticate
the device Di by verifying its certificate and then having Di prove knowledge of the
private matrix associated with the public matrix in the certificate. The device Di

proves this knowledge by showing that it can generate the same shared secret as
the HD.

In the other direction, the Di device can authenticate the HD if the HD proves
that it has created the same shared secret and Di verifies that C ′M ′M−1C−1 6=
Ci
(
C ′M ′M−1C−1

)
C−1i which is equivalent to checking that s 6= s′ in step 8. The

latter verification thwarts a trivial spoof of the HD (where β, β′ = 1). The former
condition is sufficient because only one HD contains the conjugate data to generate
the HD keypair, so only that HD could generate a public key that would create the
same shared secret. Further, since the protocol halts in step 8 if the vector s has
more than N/2 entries which are zero, it is not possible for an attacker to act as
the HD with an invalid vector s such as s = 0.. See Section 6 for further analysis.

It is not at all obvious that the column vectors s, s′ produced by the HD and
Di have to be equal. We now provide a proof of this. To begin, the braids β
and β′ commute with βi, since they are formed from the sets of conjugates Cα, Cγ ,
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respectively, and these sets of conjugates commute. It follows from Step 5 that

(CCiMi, σi) ? (β, σ) =
(
CiCM,σ

)
? (βi, σi)

= (Y, σiσ),

(C ′CiMi, σi) ? (β′, σ) =
(
CiC

′M ′, σ
)
? (βi, σi)

= (Y ′, σiσ).

Now define an unknown matrix X by the formula

(1, σ) ? (βi, σi) = (X,σi) .

It follows that

Y = CiCMX, Y ′ = CiC
′M ′X.

Next, define a column vector x where

x = (CiCM)
−1 · s.

The column vector x is just the (N/2)
th

column of the matrix X. Hence

s′ = CiC
′M ′ · x = CiC

′M ′M−1C−1C−1i · s,
which shows that the computed secrets agree.

6. Security Analysis of Ironwood. The Ironwood protocol is an outgrowth of
the Algebraic EraserTM key agreement protocol (AEKAP) first published in [1]
in 2006. The security of the AEKAP was based on the difficulty of inverting E-
multiplication and the hard problem of solving the simultaneous conjugacy search
problem for subgroups of the braid group. The AEKAP had withstood numerous
attacks (see [10], [11],[12], [15], [16],[22]) in the last 10 years. However, the recent
successful attack of Ben-Zvi, Blackburn, Tsaban (BBT) [7], for small parameter
sizes, requires an increase in key size (see [2]) to make AEKAP secure against the
BBT attack.

The Ironwood protocol was designed to be totally immune to the BBT attack
[7] without compromising on key size, speed or power consumption. A necessary
requirement for the security of Ironwood is that the T -values and conjugates that
are distributed to the HD cannot be obtained by an adversary. The T -values and
conjugates are not on any of the other devices Di in the network. Without knowing
the T -values and conjugates, the BBT attack [7] cannot proceed at all.

It is also clear that the Ironwood protocol satisfies the last requirement of an
MKAAP. Namely, if an attacker can break into one of the devices Di and obtain
its private key, then only the security of Di is breached; all other devices remain
secure because the only secret information on the device Di is the private key Ci.
Knowledge of Ci has no effect on the key agreement and authentication protocol
between the HD and other devices Dj with j 6= i.

We now present a preliminary informal security analysis of Ironwood.

Reversing E-multiplication is Algorithmically Hard. Strong support for the
hardness of reversing E-Multiplication can be found in[21], which studies the secu-
rity of Zémor’s hash function [25]. This is a hash function H : {0, 1}∗ → SL(2,Fq)
constructed by fixing two matrices h0, h1 ∈ SL(2,Fq). Then, if B is the bitstring
b1b2 · · · bn, one puts

H(B) =

n∏
i=1

hbi .
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For example, the bitstring 01101 hashes to the product h0h1h1h0h1 ∈ SL(2,Fq).
Zemor’s hash function has not been broken since its inception in 1991. In [21],
it is shown that feasible cryptanalysis for bit strings of length 256 can only be
applied for very special instances of h. Now E-Multiplication, though much more
complex, is structurally similar to a Zémor-type scheme involving a large finite
number of fixed matrices in SL(2,Fq) instead of just two matrices h0, h1. Further,
E-multiplication is highly non-linear (in contrast to ordinary matrix multiplication)
because it involves permutation of variables of Laurent polynomials. This serves as
an additional basis for the assertion that E-Multiplication is difficult to reverse.

Invalid Public-Key Attack. We now consider an invalid public-key attack of the
type presented in [8]. Such an attack assumes that an adversary can impersonate
the HD and run the Ironwood authentication protocol (using invalid public keys)
with a device Di. This type of attack is thwarted in Step 8 of the protocol if a rogue
HD (i) sends an invalid vector s to Di, (ii) chooses β, β′ = 1 or very short, or (iii)
sends a matrix that is mostly 0. In all cases Di can look at the matrix and ensure
there are a sufficient number of non-zero entries; in other words that the matrix is
“far” from the identity.

We note that this attack does reduce the minimum possible security level because
an attacker needs to only search through qX possible states (where X is the number
of non-zero entries in the s vector). By requiring at least half the entries to be non-
zero, we reduce the minimum possible security level by half. If we require more of s
to be non-zero, we can minimize the impact at the expense of possibly considering a
real transaction to be bogus (because each entry in s has a 1 in q chance of randomly
being 0). Moreover, by requiring the HD matrix to be more than half non-zero, it
forces the result of a valid Di computation to mix the results sufficiently such that
a reduced-space s vector will still incur the qX search space, even if an attacker
chooses short β, β′ and a non-zero matrix.

Further, if the Di uses a hash to create a validation value that does not reveal
the shared secret in any way or the Di uses a nonce and Message Authentication
Code (MAC) in a challenge/response protocol (see [6]), then an invalid key attack
would not directly reveal any information to a rogue HD.

Consider now the reverse case where a rogue device Di is trying to attack the
HD by sending an invalid public key to the HD. If the HD reveals s to a rogue Di

using an invalid public-key attack of Di it may lead to potential leakage. The best
approach to protect against an invalid public-key attack against the HD is to have
the device Di’s public key signed by a trusted CA/TTP. This allows the HD to
check that the public key of the device Di is valid by validating the certificate. If
the certificate is not valid, the protocol terminates. Recall that this is the method
we propose in Step 1 of the Ironwood Protocol.

In both cases, the use of single-use ephemeral keys prevent an attack. If an
attacker works against an HD (or a Di), which uses a single-use ephemeral key,
then multiple invalid-key attacks would always return unique responses.

Length Attacks and Simultaneous Conjugacy Search Attacks. Although
AEKAP has withstood length attacks and simultaneous conjugacy search attacks
(see [15]) of the type presented in [10], [11], [16], [22], these attacks completely fail
for Ironwood. This is because it is assumed that the two sets of conjugates, Cα, Cγ ,
are not known to an adversary. These two sets of conjugates are not in memory
on any of the devices Di, and only one of the sets Cα is in memory on the HD.
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An assumption of Ironwood is that an adversary cannot obtain secret information
stored on the HD.

A Class of Weak Keys. It is crucial that Ci does not commute with M ′M−1.
Otherwise an adversary can compute

s′ = (C ′M ′) · (CM)−1 · s.

Similarly, it is also crucial that Mi does not commute with (C ′M ′) · (CM)−1. Oth-
erwise an attacker can compute

s′ = (CiMi) · (C ′M ′)−1 · (CM) · (CiMi)
−1 · s.

The probability that one of the above commuting occurs is very small. An upper
bound for the probability that two matrices commute in GL(N,Fq) can be deter-
mined as follows. It is well known that there are

N−1∏
k=0

(qN − qk)

elements in GL(N,Fq), denoted #GL(N,Fq). On taking logarithms, summing over
k, and exponentiating back, it may be shown that

#GL(N,Fq) ≥ qN(N−1)− N
q log q

for N, q ≥ 8. For two matrices X,Y ∈ GL(N,Fq) to commute, X must be in the
centralizer of Y , and for a generic matrix X, its centralizer consists of polynomials
in X. The number of such polynomials is at most qN . So an upper bound for the
probability that two matrices in GL(N,Fq) commute is given by

qN

qN(N−1)− N
q log q

.

For example, when N = 16 and q = 256, the upper bound for the probability is
3.815× 10−540.

Quantum Resistance of Ironwood. The Ironwood MKAAP and underlying E-
Multiplication appear resistant to known quantum attacks. The following sections
provide an overview and analysis.

Resistance to Shor’s Quantum Algorithm. Shor’s quantum algorithm[24] en-
ables a sufficiently large quantum computer to factor numbers or compute discrete
logs in polynomial time, effectively breaking RSA, ECC, and DH. It relies on the
existence of a fast quantum algorithm to solve the Hidden Subgroup Problem (HSP)
when the hidden subgroup is a finite cyclic group. It is known that HSP can be
solved on a quantum computer when the hidden subgroup is abelian[19].

Ironwood, but more specifically E-Multiplication, are constructions based on the
infinite non-abelian braid group. In fact, the braid group is torsion free and, hence,
has no finite subgroups. As a result, there seems to be no way to apply Shor’s
algorithm to attack Ironwood.
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Resistance to Grover’s Quantum Search Algorithm. Grover’s quantum search
algorithm[14] allows a quantum computer to search for a particular element in an
unordered n-element set in a constant times

√
n steps as opposed to a constant

times n steps required on a classical computer. Resistance to Grover’s search algo-
rithm requires increasing the search space. Since E-Multiplication scales linearly,
this means that if an attacker has access to a quantum computer running Grover’s
algorithm, it is only necessary to double the running time of Ironwood to maintain
the same security level that currently exists for attacks by classical computers. In
comparison, the running time of ECC would have to increase by a factor of 4 since
ECC is a based on a quadratic algorithm.

Brute Force Attacks on the Ironwood Key Agreement Protocol. We now
discuss the security level of the individual secret components in the Ironwood pro-
tocol. For accuracy, we give the following definition of security level.

Definition 6.1. (Security Level): A secret is said to have security level 2k over
a finite field F if the best-known attack for obtaining the secret involves running
an algorithm that requires at least 2k elementary operations (addition, subtraction,
multiplication, division) in the finite field F .

We assume that Ironwood is running on the braid group BN over the finite field
Fq. Note that there are qN polynomials of degree N − 1 over Fq. So a brute force
search for a particular polynomial of degree N − 1 over Fq has security level qN .

• The brute force security level of the matrix Ci is qN .

• The brute force security levels of the matrices C,C ′ are qN .

The T -values is a set of field elements {τ1, τ2, . . . , τN} where none of the τi = 0 or
1.

• The brute force security level of the T -values is (q − 2)N .

Note that the size of the public keys Pubi of the devices Di is N2 · log2(q) +
N log2(N) and the size of the public key of the HD is (N2 + N) · log2(q). We can
thus assert

• The brute force security level of the exchanged key is 2N log2(q) = qN .

• The brute force security level of either of the private braids β, β′ is

SL > (2r)L

where L is the length of the braid as a word in the conjugates assigned to the HD,
and hence we have the lower bound

SL > min((2r)L, (q − 2)N ).

An active attacker who attempts to run a weak-key attack can force a reduction
in security level. Specifically, we would expect the search-space of s′ to be qX where
X is the number of non-zero entres in the s vector sent by the HD to Di, or more
accurately, the number of non-zero entries required by Di. An attacker who sends
an s vector with just under half of the entries 0 would reduce the security level by
half. Therefore, to properly defeat this kind of attack requires choices for N and q
such that qN ≥ 22SL, or more accurately, qX ≥ 2SL where X < N .
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A passive eavesdropper only gains access to the public keys and s-column. That
does not provide enough information to reproduce the shared secret. In that E-
Multiplication is conjectured to be a one-way function, knowledge of (CiMi, σi)
does not enable an attacker to learn Ci, which would be required to compute the
shared secret as Di. Similarly, knowledge of (C ′M ′M−1C−1) does not provide
enough information to deduce C,C ′, β, or β′. This prevents computing the shared
secret as the HD using Di’s public key.

If an attacker breaks into one Di device and reads out its key material, they
cannot use that against another device Dj (i 6= j). Each device’s matrices are
independently generated, so knowledge of one provides no information about any
other device keys.

It has become standard in the art to give security proofs for both asymmetric
key exchange protocols and digital signatures. The structure of such proofs do not
lend themselves to the Ironwood protocol (or any other MKAAP), and as of this
writing no other security proof which would has been introduced to the field.

7. Implementation Experience. For testing purposes, Ironwood was implemented
on multiple platforms. Because the Other Devices only need to perform a single
matrix multiplication and a single vector multiplication, we focused our effort on
the requirements of the HD, as those operations are more consuming and therefore
more interesting to explore.

Operationally, the HD needs to perform two sets of E-Multiplication operations
(one with β and another with β′), which take the majority of the execution time.
A single E-Multiplication operation in BN requires N multiplies and 2N additions
over the finite field Fq. These operations, in turn, gets multiplied by the number of
Artin generators in each braid.

As an example, we generated key material using B16F256 for a proposed 264

security level. We generated 32 conjugates for each set and from there generated
key material for testing. For this testing, we generated 10 sets of HD keys which
averaged a braid length of 2659.2 Artin Generators for β and 4302.4 for β′.

The first platform tested was a Texas Instruments (TI) MSP430 16-bit (model)
microcontroller. This platform runs at various speeds from 8Mhz to 30Mhz (or
faster). On this platform we used the IAR (2011) compiler, version 5.40.1 with Op-
timizations set to High and all transformations and unrolling options checked. With
this setting the Ironwood HD implementation built into 3126 bytes of ROM and ran
with 354 bytes of RAM. Running over the 10 keys, the MSP430 required anywhere
from 4,532,480 to 6,002,668 cycles with an average of 5,309,182. At 25MHz this
equates to an average runtime of 212ms. Ironwood does not require a hardware
multiplier.

The second platform was an NXP LPC1768 running at 48MHz, which contains
an embedded ARM Cortex M3. We compiled our code using GCC (arm-none-eabi-
gcc) version 4.9.3 using optimization level -O3. This built down into 2578 bytes of
ROM and the runtime required 1192 bytes of RAM. Running the Ironwood shared
secret calculation over the 10 keys, this ARM platform required anywhere from
1,538,472 to 2,026,216 cycles to compute a shared secret, resulting in a runtime of
32.1 to 42.2ms (averaging 37.4ms).

The third platform was a TI CC2650, an embedded ARM Cortex M3 running
at 48MHz on TI-RTOS. On this platform we used TI’s arm compiler (listed as TI
v5.2.0). It was configured at optimization level 4 (Whole Program optimizations)
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Table 1. Performance on MSP430, LPC1768 (in Cycles)

Artin Length MSP430 LPC1768
|β| |β′|

2626 5272 6002668 2026216
2332 3580 4532480 1538472
2414 3944 4862464 1648742
3172 4266 5661952 1914009
2168 4514 5101824 1728545
3092 4698 5922048 2000312
2978 3968 5297664 1792959
2744 4420 5459456 1845502
2430 4762 5479424 1854446
2636 3600 4771840 1617670

2659.2 4302.4 5309182 1796687

with a size-speed tradeoff (SST) of 5 (ranging from 0 to 5, 0 being fully size op-
timized, 5 being fully speed optimized). At this level, the code used 3568 bytes
of ROM and 1192 bytes of RAM. With this setting Ironwood computed a shared
secret in an average of 37.4ms.

We also performed tests using the size-speed tradeoff of 2, which resulted in a
smaller code size of only 1954 bytes of ROM and resulted in a very minor speed
penalty, reducing the average computation time to 37.6ms. Note that on this plat-
form we could not get a cycle count, only a timer, and the timer API only has a 216

cycle resolution timer, which means the timer increments every 216/486 = 1.37ms.
This implies the timer results are +/-0.7ms. However, the times are still on par
with the timing on the LPC1768.

Table 2. Performance on MSP430, LPC1768, CC2650 (in ms)

Artin Length MSP430 LPC1768 CC2650 48Mhz
|β| |β′| 25MHz 48MHz (SST 5) (SST 2)

2626 5272 240.1 42.2 42 42
2332 3580 181.3 32.2 32 32
2414 3944 194.5 34.3 34 35
3172 4266 226.5 39.9 40 40
2168 4514 204.1 36.0 36 36
3092 4698 236.9 41.2 42 42
2978 3968 211.9 37.4 37 37
2744 4420 218.4 38.4 38 39
2430 4762 219.2 38.6 39 39
2636 3600 190.9 33.7 34 34

2659.2 4302.4 212.4 37.4 37.4 37.6

We should note that implementations of the Ironwood Other Device are approx-
imately 50-times faster than the HD computations.

8. Conclusion. In this paper, we have introduced a new concept called a Meta
Key Agreement and Authentication Protocol, and defined an instance of this proto-
col called the Ironwood MKAAP. We show how it resists the range of known attacks
against E-Multiplication based protocols and how, in addition, it is quantum resis-
tant in that it resists both the Shor and Grover algorithms.
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Implementations of Ironwood have been built and tested on multiple platforms,
and we have shown the performance numbers achieved on three different platforms
leveraging two different architectures. Specifically, we show that we can achieve a
key agreement on an MSP430 in 212ms and 37ms on an ARM Cortex M3 acting as
the HD.
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