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Abstract. This paper presents an in depth discussion of WalnutDSA, a quantum resistant

public-key digital signature method based on the one-way function E-multiplication. A key fea-

ture of WalnutDSA is that it provides very efficient means of validating digital signatures which is
essential for low-powered and constrained devices. This paper presents an in-depth discussion of

the construction of the digital signature algorithm, and delves deeply into the underlying mathe-

matics that facilitates analyzing the security of the scheme. When implemented using parameters
that defeat all known attacks, WalnutDSA is among the fastest quantum resistant signature ver-

ification methods; it performs orders of magnitude faster than ECC, even on low-end embedded

hardware. WalnutDSA delivers a 12-25x speed improvement over ECDSA on most platforms, and
a 31x speed improvement on a 16-bit microcontroller, making it an ideal solution for low-resource

processors found in the Internet of Things (IoT).

Group Theoretic Cryptography, Digital Signature, E-Multiplication, Braids, Internet of Things,
IoT

1. Introduction

Digital signatures provide a means for one party to create a document that can be sent through
a second party and verified for integrity by a third party. This method ensures that the first
party created the document and that it was not modified by the second party. Historically, digital
signatures have been constructed using various number-theoretic, public-key methods like RSA,
DSA, and ECDSA. These methods are inherently not very efficient when run on platforms with
constrained processors (16-bit or even 8-bit), or systems with limited space or energy.

Digital signatures based on algorithmically hard problems in group theory were introduced in
2002 by Ko, Choi, Cho, and Lee [31] and in 2009 by Wang and Hu [47]. The approach of Ko, Choi,
Cho, and Lee utilized a variation of the conjugacy problem in non-commutative groups as a basis
for security, while Wang and Hu [47] opted for the hardness of the root problem in braid groups
(see also [29]). The attacks introduced in [19], [20], [22], and [27] suggest that the schemes by Ko
et al. and Wang and Hu may not be practical over braid groups in resource limited settings.

The group-theoretic one-way function E-Multiplication was first introduced in 2005 by An-
shel, Anshel, Goldfeld, and Lemieux [6]. Based on a representation of the Artin Braid group,
E-Multiplication enables the effective use of a non-abelian infinite group and can serve as a build-
ing block for a range of cryptographic protocols which are, by construction, quantum-resistant
due to the braid group being an infinite non-abelian group. Other examples of applications of
E-Multiplication include the cryptographic hash function AEHash [3], which has been implemented
using very little code space on a 16-bit platform [4], and the Ironwood Meta Key agreement proto-
col [5].
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Implementations of E-Multiplication in various instances have shown that code space is small
and runtime is extremely rapid, with constructions using E-Multiplication outperforming competing
methods, especially in small, constrained devices.

2. Colored Burau Representation of the Braid Group

We begin by recalling the colored Burau representation. For N ≥ 2, let BN denote the N -strand
braid group with Artin generators {b1, b2, . . . , bN−1}, subject to the following relations:

bibi+1bi = bi+1bibi+1, (i = 1, . . . , N − 2),

bibj = bjbi, (|i− j| ≥ 2).

Thus any β ∈ BN can be expressed as a product of the form

(1) β = bε1i1 b
ε2
i2
· · · bεkik ,

where ij ∈ {1, . . . , N − 1}, and εj ∈ {±1}. Note that β is not uniquely represented by (1) since the
braid group is palpably not free.

Let SN be the group of permutations on N letters. Each braid β ∈ BN determines a permutation
in SN as follows. For 1 ≤ i ≤ N − 1, let σi ∈ SN be the ith simple transposition, which maps
i→ i+ 1, i+ 1→ i, and leaves {1, . . . , i− 1, i+ 2, . . . , N} fixed. Then the map bi 7→ σi extends to
a surjective homomorphism BN → SN . A braid is called pure if its corresponding permutation is
trivial (i.e., the identity permutation). Clearly the set of pure braids coincides with the kernel of
the map BN → SN .

Let Fq denote the finite field of q elements, and for variables t1, t2, . . . , tN , let

Fq[t1, t−11 , . . . , tN , t
−1
N ]

denote the ring of Laurent polynomials in t1, t2, . . . , tN with coefficients in Fq. We introduce the
colored Burau representation

ΠCB : BN → GL
(
N,Fq[t1, t−11 , . . . , tN , t

−1
N ]
)
o SN .

For each Artin generator bi we define the N ×N colored Burau matrix CB(bi) generator as follows
[38]: if i = 1, we put

(2) CB(b1) =



−t1 1 0 · · · 0

0 1 0 · · ·
...

... 1
. . .

1


,

and for 2 ≤ i ≤ N − 1, we define CB(bi) by

(3) CB(bi) =



1
. . .

ti −ti 1
. . .

1

 ,
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where the indicated variables appear in row i. We similarly define CB(b−1i ) by modifying (3)
slightly:

CB(b−1i ) =



1
. . .

1 − 1
ti+1

1
ti+1

. . .

1

 ,

where again the indicated variables appear in row i, and as above if i = 1 the leftmost 1 is omitted.
Recall that each bi has an associated permutation σi. We may then associate to each braid

generator bi (respectively, inverse generator b−1i ) a colored Burau/permutation pair (CB(bi), σi)

(resp., (CB(b−1i ), σi)). We now wish to define a multiplication of such colored Burau pairs. To
accomplish this, we require the following observation. Given a Laurent polynomial f(t1, . . . , tN )
in N variables, a permutation in σ ∈ SN can act (on the left) by permuting the indices of the
variables. We denote this action by f 7→ σf :

σf(t1, t2, . . . , tN ) = f(tσ(1), tσ(2), . . . , tσ(N)).

We extend this action to matrices over the ring of Laurent polynomials in the ti by acting on each
entry in the matrix, and denote the action by M 7→ σM . The general definition for multiplying two
colored Burau pairs is now defined as follows: given b±i , b

±
j , the colored Burau/permutation pair

associated with the product b±i · b
±
j is

(CB(b±i ), σi) · (CB(b±j ), σj) =
(
CB(b±i ) · (σiCB(b±j )), σi · σj

)
.

We extend this definition to the braid group inductively: given any braid

β = bε1i1 b
ε2
i2
· · · bεkik ,

as in (1), we can define a colored Burau pair (CB(β), σβ) by

(CB(β), σβ) =

(CB(bε1i1 ) · σi1CB(bε2i2 ) · σi1σi2CB(bε3i3 ) · · · σi1σi2 ···σik−1CB(bεkik ), σi1σi2 · · ·σik).

The colored Burau representation is then defined by

ΠCB(β) := (CB(β), σβ).

One checks that ΠCB satisfies the braid relations and hence defines a representation of BN .

3. E-Multiplication

E-Multiplication was first introduced in [6] as a one-way function used as a building block to
create multiple cryptographic constructions. We recall its definition here. Beginning with an
ordered list of entries in the finite field (termed T-values) is defined to be a collection of non-zero
field elements:

{τ1, τ2, . . . , τN} ⊂ F×q .
Given a set of T-values, we can evaluate any Laurent polynomial f(t1, t2, . . . , tN ) to obtain an
element of Fq:

f(t1, t2, . . . , tN ) ↓t-values := f(τ1, τ2, . . . , τN ).

We extend this notation to matrices over Laurent polynomials in the obvious way.
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With all these components in place, we can now define E-Multiplication. By definition, E-
Multiplication is an operation that takes as input two ordered pairs,

(M,σ0), (CB(β), σβ),

where β ∈ BN and σβ ∈ SN as before, and where M ∈ GL(N,Fq), and σ0 ∈ SN . We denote
E-Multiplication with a star: ?. The result of E-Multiplication, denoted

(M ′, σ′) = (M,σ0) ? (CB(β), σβ),

will be another ordered pair (M ′, σ′) ∈ GL(N,Fq)× SN .
We define E-Multiplication inductively. When the braid β = b±i is a single generator or its

inverse, we put

(M,σ0) ?
(
CB(b±i

)
, σb±i

) =
(
M · σ0

(
CB(b±i

)
) ↓t-values, σ0 · σb±i

)
.

In the general case, when β = bε1i1 b
ε2
i2
· · · bεkik , we define

(4) (M,σ0) ? (CB(β), σβ) = (M,σ0) ? (CB(bε1i1 ), σbi1 ) ? (CB(bε2i2 ), σbi2 ) ? · · · ? (CB(bεkik ), σbik ),

where we interpret the right of (4) by associating left-to-right. One can check that this is indepen-
dent of the expression of β in the Artin generators.

Convention: Let β ∈ BN with associated permutation σβ ,∈ SN . Let M ∈ GL(N,Fq) and σ ∈ Sn.
For ease of notation, we let (M,σ) ? β := (M,σ) ? (CB(β), σβ).

The discussion above can be summarized as follows: E-multiplication is an action of BN on
GL(N,Fq)× SN via a representation into a semidirect product(

GL(N,Fq)× SN
)
?ΠCB(BN ) −→

(
GL(N,Fq)× SN

)
.

Given β ∈ BN , we define P(β) to be the image of (IdN , IdSN ) ∈
(
GL(N,Fq) × SN

)
under E-

multiplication by β:

P(β) :=
(
IdN , IdSN

)
? β,

where IdN is the N ×N identity matrix and Id
SN
∈ SN is the identity permutation.

The security of WalnutDSA is based, in part, on the following highly non-linear problem that
we perceive to be computationally infeasible for sufficiently large key and parameter sizes.

The REM Problem (Reversing E-Multiplication is hard) Consider the braid group BN and
symmetric group SN with N ≥ 10. Let Fq be a finite field of q elements,and fix a set of non-zero T -
values {τ1, τ2, . . . , τN} in F×q , the invertible elements of Fq. Given a pair (M,σ) ∈ (GL(N,Fq), SN )
where it is stipulated that

(M,σ) = P(β)

for some unknown braid β ∈ BN (with sufficiently long BKL normal form), then it is infeasible to
determine a braid β′ such that (M,σ) = P(β′).

Support for the hardness of reversing E-Multiplication can be found in [39] which studies the
security of Zémor’s [50] hash function h : {0, 1}∗ → SL2(Fq), with the property that h(u v) =
h(u)h(v), where h(0), h(1) are fixed matrices in SL2(Fq) and uv denotes concatenation of the
bits u and v. For example a bit string {0, 1, 1, 0, 1} will hash to h(0)h(1)h(1)h(0)h(1). Zémor’s
hash function has not been broken since its inception in 1991. In [39] it is shown that feasible
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cryptanalysis for bit strings of length 256 can only be applied for very special instances of h.
Now E-Multiplication, though much more complex, is structurally similar to a Zémor type scheme
involving a large finite number of fixed matrices in SL2(Fq) instead of just two matrices h(0), h(1).
This serves as an additional basis for the assertion that E-Multiplication is a one-way function.

4. Cloaking Elements

The second component of the security of WalnutDSA is based on our ability to explicitly construct
certain braid words which we term cloaking elements. They are defined as follows.

Definition 4.1. (Cloaking element) Let σ ∈ SN . An element v ∈ BN is termed a cloaking
element of σ provided v stabilizes (M,σ) under E-muliplication for all M ∈ GL(N,Fq), i.e.,

(M,σ) ? v = (M,σ).

Thus a cloaking element is characterized by the property that it essentially disappears when
performing E-Multiplication. Remark that, by definition, every cloaking element must itself be a
pure braid braid (see §2). Letting Cloak(M,σ) denote the set of all such cloaking elements we have
the following proposition:

Proposition 4.2. The set Cloak(M,σ) forms a subgroup of BN which is contained in the pure braid
subgroup.

We remark that whether a braid element is a cloaking element is contingent on the T-values,
which are used in defining the operation ?. It is clear that cloaking elements must exist: the braid
group is infinite and any action of an infinite group on a finite set will necessarily have stabilizers.
Further, it is clear that generating very long cloaking elements is straightforward: starting with an
arbitrary braid v, first raise v to the order of its associated permutation σv, yielding a purebraid v̄.
Then raise v̄ to the (generally very large) order of the matrix (1, 1) ? σ v̄ (where (1, 1) denotes the
identity in GL(N,Fq)×SN ). What is not immediately obvious is how to construct cloaking elements
sufficiently short to be useful. The following proposition provides one technique to construct them,
and serves as an illustration of the behavior of the action (a paper focusing exclusively on the
construction and enumeration of cloaking elements will be forthcoming):

Proposition 4.3. For N ≥ 10, suppose 1 ≤ x1 < x2 < · · · < xµ ≤ N , and let

w = b
εx2−1

x2−1 b
εx2−2

x2−2 · · · b
εx1+1

x1+1 bx1 b
−εx1+1

x1+1 · · · b−εx2−1

x2−1

· bεx3−1

x3−1 b
εx3−2

x3−2 · · · b
εx2+1

x2+1 bx2
b
−εx2+1

x2+1 · · · b−εx3−1

x3−1

· · · · · bεxµ−1

xµ−1 b
εxµ−2

xµ−2 · · · b
εxµ+1

xµ−1+1 bxµ−1 b
−εxµ+1

xµ−1+1 · · · b
−εxµ−1

xµ−1 ,

where all the exponents εi ∈ {+1,−1}. Then then we have that,

• w is braid involving the strands which start at the points {x1, . . . , xµ},
• Any strand in w that originates at any y ∈ {x1 + 1, . . . , x2 − 1, x2 + 1, . . . , xµ − 1} ends at y,

• The braid w2µ, cloaks for the identity (1, 1) provided the identity

tx1 tx2 · · · txµ = −1,

holds. Further, by conjugating w by a braid z whose associated permutation is σ−1, a cloak for σ
is given by z w2µ z−1.
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The element w in the above proposition is termed the core of the cloak w2µ with exponent 2µ.
There turn out to be various ways of constructing cores of cloaking elements. To facilitate the flow
of this paper we defer the lengthy discussion of this topic to Appendices A and B. In all discussions
that follow we will assume that all methods of generating cores are used; the combinatorics of the
generation methods will contribute to the security of WalnutDSA.

The concept of a cloaking element naturally lends itself to the following observation. Fix a braid
β, say

β = bε1i1 · · · b
ε`
i`
,

and choose some integer 1 ≤ k ≤ `. Clearly, β = x1 ·x2 where x1 = bε1i1 · · · b
εk−1

ik−1
and x2 = bεkik · · · b

ε`
i`

,

and we hence for any for any matrix/permutation pair (m0, σ0), we have that

(m0, σ0) ? β = ((m0, σ0) ? x1) ? x2.

Using Proposition 4.3 we can generate a cloaking element v for the product of σ0 · σx1
where

σx1
deotes the permutation associated with x1. By construction, given any matrix M we have that

(M,σ0 · σx1
) ? v = (M,σ0 · σx1

). Since (m0, σ0) ? x1 takes the form (m0, σ0) ? x1 = (M,σ0 · σx1
), we

have that

(m0, σ0) ? β = ((m0, σ0) ? x1) ? x2

= (M,σ0 · σx1
) ? x2

= (M,σ0 · σx1
) ? v ? x2

= ((m0, σ0) ? x1) ? v ? x2 = (m0, σ0) ? x1 ? v ? x2.

Hence we have generated a new braid β′ which contains v,

β′ = x1 · v · x2,

which has the property that (m0, σ0) ? β = (m0, σ0) ? β′. We shall refer to this inserted cloaking
element as a concealed cloaking element. The above discussion is summarized in the following
proposition:

Proposition 4.4. Given a braid β and a matrix/permutation pair (m0, σ0) it is possible to generate
another braid β′ so that (m0, σ0) ? β = (m0, σ0) ? β′ by randomly inserting a cloaking element for a
permutation that is not a priori known, i.e., a concealed cloaking element within β. In the case β
is itself a cloaking element for a given permutation, the resulting β′ will also be a cloaking element
for the same permutation, but will have a distinct structure from β.

The process of randomly inserting cloaking elements into a braid can be iterated and we introduce
the following definition:

Definition 1.5 Given an element β ∈ BN , the output of κ iterations of randomly inserting cloaking
elements as described in Proposition 4.4 into the braid β, is defined to be a κ–cloaking of β and is
denoted by κ(β).

5. Key Generation for WalnutDSA

WalnutDSA allows a signer with a fixed private/public-key pair to create a digital signature
associated with a given message that can be validated by anyone who knows the public-key of
the signer and the verification protocol. To facilitate the method, a central authority generates
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the system wide parameters using a publicly known parameter generation algorithm, and a signer
S generates its own public and private key pair, denoted (Pub(S), Priv(S)), via a key generation
algorithm.

Public System Wide Parameters:

• An integer N ≥ 10 and associated braid group BN .

• A message encoding algorithm which is the composition of a cryptographically secure 2η–bit
hash function H : {0, 1}∗ → {0, 1}2η, and an injective map E : {0, 1}2η → HN , where HN is a free
subgroup contained in the pure braid group on N strands.

• A finite field Fq.

Signer’s Security Parameters:

The Signer requires a set of parameters used to meet the desired security level. These parameters
may be public, but the verifier does not not need access to them. They include:

• A method of generating a large search space of cloaking elements, v, for any given pair (M,σ).

• An integer κ > 1 which is chosen to meet the security level. The signature will utilize κ
concealed cloaking elements.

• A rewriting algorithm R : BN → BN which uses the relations of the group to render a rewritten
word unrecognizable. Example of such rewriting algorithms, which will serve as the third component
of the security of WalnutDSA, can be found in [13] or [17].

Signer’s Private Key:

The Signer’s Private Key consists of two random, freely-reduced braids:

• Priv(S) = (w,w′) ∈ BN ×BN .

Here the three braids w, w′ and w′ · w are not in the pure braid group. We assume w,w′ are
sufficiently long to provide the necessary resistance to brute-force searches for the desired security
level (see §9).

Signer’s Public Key:

The Signer’s Public Key consists of two matrix and permutation pairs, each of which is generated
from the Private Keys of the signer via E-Multiplication, and a set of T-values:

• Pub(S) =
(
P(w), P(w′)

)
.

• T-values = {τ1, τ2, . . . , τN}, where each τi is an invertible element in Fq, such that some
specified identities involving a subset of the T-values hold. Such identities may take the form, for
example, τa · τx · τb = −1, where 1 ≤ a < x < b ≤ N .

6. Message Encoder Algorithm

In order to generate a secure signature and prevent certain types of merging attacks, one must
carefully convert the message to be signed into a braid word. Let m ∈ {0, 1}∗ be a message. Let
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H : {0, 1}∗ → {0, 1}2η denote a cryptographically secure 2η-bit hash function for η ≥ 1. We now
present an injective encoding function E : {0, 1}2η → HN , where HN is a free subgroup of the pure
braid group generated by the N −1 braids defined below. We recall that a group is said to be freely
generated by a subset of elements provided a reduced element (a word where the subwords x · x−1,
and x−1 · x do not appear for any generator x) is never the identity.

It is requisite in WalnutDSA that the permutation of the encoded message be trivial, i.e., the
encoded message must be a pure braid. In order to ensure that no two messages will be encoded in
the same way, we require the message be encoded as unique nontrivial reduced elements in a free
subgroup of the pure braid group. This requirement ensures that distinct messages will result in
distinct encodings. One possible encoding algorithm is based on the following classical observation:
the collection of pure braids given by

g(N−1),N = b2N−1(5)

g(N−2),N = bN−1 · b2N−2 · b−1N−1
g(N−3),N = bN−1bN−2 · b2N−3 · b−1N−2b

−1
N−1

g(N−4),N = bN−1bN−2bN−3 · b2N−4 · b−1N−3b
−1
N−2b

−1
N−1

...

g1,N = bN−1bN−2 · · · b2 · b21 · b−12 b−13 · · · b
−1
N−1,

generate a free subgroup HN ≤ BN [12]. For simplicity, we will write gi for gi,N when N is clear
from the context.

Message Encoder Algorithm: We determine a braid E(H(m)) ∈ BN as follows. The hashed
message H(m) consists of η 2-bit blocks. Fix a collection S of η subsets Sη, where each Sη consists
of a four-tuple of distinct generators taken from (5):

Sk = (gk1 , gk2 , gk3 , gk4).

Each 2-bit block of H(m) determines a unique element of the corresponding tuple Sk, and the
output E(H(m)) is then the product of these generators of HN , taken in order over the blocks of
H(m). It is clear that this map is injective, since the gi generate a free subgroup, and since the
knowledge of E(H(m)) and the sets Sk allows one to recover H(m).

Without the presence of the hash function, the encoding function E would be homomorphic,
i.e., E(m)E(m′) = E(mm′) for all messages m,m′. However, this is not a problem since the input
to the encoder is the digest of a message. Indeed, for a good cryptographic hash function H, we
know that H(m)H(m′) will never equal H(mm′). We also know it is unlikely to find two classes of
hash functions H1, H2 such that the output size of H1 is half the output size of H2, and then to
further find three messages m, m′, and m′′ such that H1(m) H1(m′) results in the same output1

as H2(m′′), and also get a signer to sign both messages m and m′ using H1. We also note that
including a hash algorithm identifier in the message after it is hashed would prevent this attack.

1For a weak hash H1 and a strong hash H2, which has twice the output size of H1, an attacker would need to

find two messages m and m′ that are preimages to the halves of H2 of the desired forgery and then get the signer
to use H1 and sign both m and m′. E.g. the attacker would need to take his or her desired forged message, hash it

using SHA2-256, find two preimages with MD5, get the signer to sign those MD5 preimages, and only then can he
or she compose a message that would verify with SHA2-256.
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A Second Message Encoder Algorithm: There are multiple ways to generate an encoder
algorithm. The important requirements are that it must be injective, must result in a pure braid,
and should use every strand (in order to generate a large dimension in the E-multiplication vector
space). Moreover, both the signer and verifier must agree on the method itself.

In the case of N = 10 there is another, more compact encoder that we can use. We note that
the braid

bεX1 bε12 b
ε2
3 b

ε3
4 b

ε4
5 b

ε5
6 b

ε6
7 b

ε7
8 b

ε8
9 b

ε8
9 b

ε9
8 b

ε10
7 bε116 bε125 bε134 bε143 bε152 bε161

can directly encode 16 bits into 18 generators, where each bit denotes a +1 or −1 exponent, and
we duplicate ε8 in the middle of the word and ε16 can carry into εX in the next word. For a 256-bit
hash like SHA2-256, this results in a fixed-size encoder output of 288 generators.

One can clearly see that this method produces an output that is injective, a pure braid, and
utilizes all braid strands.

7. Signature Generation and Verification

Fix a hash function H as in §6. To sign a message m ∈ {0, 1}∗ the Signer performs the following
steps:

Digital Signature Generation:

1. Compute the hash of the message H(m).

2. Generate cloaking elements {v, v1, v2} which cloak, respectively, the identity permutation in
SN , IdSN , and the permutations associated with w,w′ σw, and σw′ .

3. Generate the encoded message E(H(m)).

4. Compute Sig = R
(
κ(v1 · w−1 · v · E(H(m)) · w′ · v2)

)
, which is a rewritten braid.

5. The final signature for the message m is the ordered pair (H(m),Sig).

As addressed earlier, the cloaking elements v, v1, v2 ∈ Bn disappear when the signature is E-
Multiplied by the public key Pub(S), and the insertion of κ concealed cloaking elements will, by
construction, not impact the verification .

Signature Verification: The signature (m,Sig) is verified as follows:

1. Generate the encoded message E(H(m)).

2. Evaluate P(E(H(m))).

3. Evaluate the E-Multiplication P(w) ? Sig.

4. Test the equality

(6) Matrix
(
P(w) ? Sig

)
?
= Matrix

(
P
(
E(H(m))

))
·Matrix

(
P
(
w′
))
,

where Matrix denotes the matrix part of the ordered pair in question, and the multiplication on
the right is the usual matrix multiplication.
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Public System Wide Parameters 

 𝐵𝑁, 𝐹𝑞   ⊃   { 𝜏1 , 𝜏2 , … , 𝜏𝑁 },   
 𝐻: { 0,1}∗ →   { 0,1 }2𝜂 , 𝐸: { 0,1 }2𝜂 → 𝐻𝑁, 
 
  

Signer  
 Signer Private Key: Priv (S) = (𝑤, 𝑤′),   
Cloaking elements: { 𝑣, 𝑣1 , 𝑣2}, Message: 𝑚 ;  𝐸(𝐻(𝑚) ) 
--------------------------------------------------------- 
 

Raw Signature:   𝜅(𝑣1 ⋅ 𝑤−1 ⋅ 𝑣 ⋅ 𝐸(𝐻(𝑚 )) ⋅ 𝑤′ ⋅ 𝑣2 )  
 

------------------- 
 

Final Signature: Sig = 𝑅 (𝜅(𝑣1 ⋅ 𝑤−1 ⋅ 𝑣 ⋅ 𝐸(𝐻(𝑚 )) ⋅ 𝑤′ ⋅ 𝑣2 ) )  

Verifier  
 Receive: (m, Sig) ;  generate 𝐸(𝐻(𝑚) ) Receive: Signer Public Key, (𝑃(𝑤), 𝑃(𝑤′)) 
--------------------------------------------------------- 
  Evaluate: 𝑃(w) ⋆ Sig,   

------------------- 
 Evaluate: 𝑃 (𝐸(𝐻(𝑚) )) = (1,1) ⋆ 𝐸(𝐻(𝑚) )   Evaluate: 1 𝑠𝑡 comp(𝑃(𝐸(𝐻(𝑚) ))  ) ,  Evaluate: 1 𝑠𝑡 comp(𝑃(𝑤′)  ) 
--------------------------------------------------------- 
Test Equality: 1𝑠𝑡 comp(𝑃(w) ⋆ Sig) = 1𝑠𝑡 comp(𝑃(𝐸(𝐻(𝑚) ))  )⋅ 1𝑠𝑡 comp(𝑃(𝑤′) ) 

  (m, Sig) 

Signer Security Parameters 
 𝜅; cloak generation 𝑅: 𝐵𝑁 → 𝐵𝑁 

Figure 1. WalnutDSA Flow Diagram

5. Reject signatures that are longer than 214 Artin generators2.

The signature is valid if and only if (4), (5) holds.

2In practice 128-bit signatures average around 211 generators, but different rewriting techniques could extend

that. Because the braid group is infinite there are many ways to represent the same signature, however all those
ways are well beyond the 214 limit.
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8. Security Discussion

To facilitate the accuracy of the discussion below we recall the following definition of security
level:

Definition 8.1. (Security Level): A secret is said to have security level k over a finite field F if
the best known attack for obtaining the secret involves running an algorithm that requires at least
2k elementary operations (addition, subtraction, multiplication, division) in the finite field F.

Linear Algebraic, Group Theoretic, and Probabilistic Attacks. Neither the attack of Ben-
Zvi–Blackburn–Tsaban [8], based on ideas in [30], or the invalid public key attack of Blackburn–
Robshaw [14] (also [1]) target the underlying hard problems on which WalnutDSA is based. This
is because the signature is a braid (a cloaked braid word) and the public key is coming from
E-Multiplication of the identity element with a braid that has very little algebraic structure.

The more recent work of Hart–Kim–Micheli–Perez–Petit–Quek [26] proposes a practical universal
forgery attack on WalnutDSA in the special case where the two private braids w and w′ are equal.
The attack proceeds by taking a collection of signed messages (Mi, si) indexed by a finite set I
and using them to produce a valid signature for a new message M . The main idea underlying the

attack is finding a short expression in GL(N,Fq) for the element h = Matrix
(
P(E(M))

)
in terms

of elements gi := Matrix
(
P(E(Mi)

)
. Namely, one seeks an expression of the form

(7) h =

l∏
j=1

g
εij
ij
, ij ∈ I, εij ∈ {±1}.

Then the braid

s =

l∏
j=1

s
εij
ij

will be a valid signature for M .

Thus the attack relies on both the equality of w and w′ and on finding factorizations in nonabelian
groups: the former implies that one can appropriately multiply the signatures si together in the
final step to produce a signature for M , and the latter implies that one can find the correct product
of the si. This attack fails if w 6= w′, since one cannot multiply the si together to produce a valid
signature. It is observed in [9] that it is possible to modify the attack of [26] so that it reduces to
the case w = w′ with forged signatures that are expected to be twice as long as forged signatures
produced by the attack of [26]. The authors of [26] point out that the forged signatures produced by
their method (in the case w = w′) are many orders of magnitude longer than the actual signatures
produced by WalnutDSA, so the attack is easily thwarted by rejecting long signatures. Further,
they also point out that their attack fails with moderate increases in the parameters N, q.

Four additional attacks have appeared recently. A Pollard-Rho type method taken by [15] uses
the estimate for the number of braids of a given length in Artin generators (see §9), and assumes the
output of E-multiplication is uniformly distributed, to give an exponential algorithm that recovers
an equivalent private key of a signature from the corresponding public key. Specifically, [15] shows
that to reach a k-bit security level:

(8) qN(N−3)−1 > 22k

11



By choosing N ≥ 10 (and q = 32 or 256) this approach becomes ineffective.

Further, the encoding method specified in §6 ensures that the vector space consisting of the matrix
component of the signers’ public keys has a sufficiently large dimension. It was observed in [10]
that the encoding must ensure this property to maintain the specified security level, specifically, to
reach a k-bit security level:

(9) qdimension > 22k

As an example of an encoding that yields sufficient security in the case N = 12, let S be the periodic
sequence of tuples {(5, 7, 9, 11), (4, 6, 8, 10), (3, 5, 7, 9), (2, 4, 6, 8), (1, 3, 5, 7), (2, 4, 6, 8), (3, 5, 7, 9),
(4, 6, 8, 10), . . . }. One can check that this dimension is 122, so using q = 32 or 256 results in
sufficiently large spaces. For the case of N = 10, S can be the sequence {(3, 5, 7, 9), (2, 4, 6, 8),
(1, 3, 5, 7), (2, 4, 6, 8), . . . } which results in a dimension of 82.

An alternate exponential factoring attack [11] found a more efficient way to find alternate private
keys that produce short signatures. The attack was mounted against the WalnutDSA NIST sub-
mission, which uses an older version of WalnutDSA where τ1 = τ2 = 1, and suggested parameters
N = 8, q = 32 for 128-bit security and N = 8, q = 256 for 256-bit security. Specifically, the attack
in [11] showed that those parameters were too small. Against that older version of WalnutDSA
using those parameters the attack runs in qN−5/2 time although they claim it can be reduced to
q(N/2)−1. While the former runtime was verified, the latter runtime was never observed using the
attack code made available.

Against this version of WalnutDSA, where τ1 · τa · τN = −1, their running time is much higher,
adding at least a factor of

√
q
√
x to their runtime, where x is a parameter in their attack (they set

x = 60 for N = 8, it is unclear what it needs to be for N = 10). This results in an (unverified)
search time of at least

(10)
√
x q(N−1)/2

Next, a method for searching for cloaking elements of known permutations has been posited by
Kotov–Menshov–Ushakov [33]. It is the presence of κ concealed cloaking elements that blocks this
attack. In general, knowing that κ concealed cloaking elements have been placed in a known braid,
it would require (N !)κ searches to find them and thus, taking the lack of possible birthday attacks
into account, to insure k-bit security we would require

(11) (N !)κ > 2k

and hence
κ > Security Level/ log2(N !).

We have explored possible birthday attacks and have ruled out obvious ways to use a birthday
attack to discover all the concealed cloaking elements. Indeed, multiple cloaking elements could use
the same permutation but each would still need to individually be discovered. Without access to a
birthday attack, in the case of N = 10, and a security level of 128 we can comfortably take κ = 6
(which results in 2130.74). Likewise, when N = 10 and the security level is 256, taking κ = 12 is
sufficient (resulting in 2261.49).

Lastly, Merz and Petit [36] proposed a practical forgery attack on WalnutDSA. They found
that using the Garside Normal Form of the signature allowed them to find commonalities with the
Garside form of the encoded message, and using those commonalities they could create a forgery. As
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pointed out by the authors, the attack can be defeated by adding cloaking elements into the encoded
message. Specifically, they conjecture that each additional cloaking element effectively mutates
approximately five (5) permutation braids in the Garside Normal Form, but, when mutated, their
attack no longer succeeds.

The Merz and Petit universal forgery attack is a heuristic method that, using knowledge of a
valid signature of a message M , aims to generate a signature of a second message M ′ that will be
validated by a receiver. The decomposition algorithm introduced in their paper (which uses the
Garside canonical form as its basis) can be applied because a Walnut signature has the form

W1E(H(M))W2

and, critically, the braid element E(H(M)) is known to everyone. Knowledge of E(H(M)) allows
the algorithm to try to derive braids W ′1,W

′
2 which satisfy the conditions Wi ≡W ′i (Mod ∆2), and

W1 ·W2 = W ′1 ·W ′2. Once a forger has said elements in place, the braid W ′1 · E
(
H(M ′)

)
·W ′2 will

verify as a signature of a message M ′.

In fact, knowledge of the entire E(H(M)) is not actually requisite. Were one to insert a single
concealed cloaking element into the encoding E(H(M)) it is still possible that the permutation
braids in the Garside normal form of said encoding still appear in the Garside normal form for
the signature. While the forgery in this case would be longer than the average signature, it might
be within the acceptable length range. Thus, in order to completely thwart the heuristic attack,
the signer must insert sufficiently many concealed cloaking elements into the braid E(H(M)) to
completely alter the Garside normal form. We have done significant testing and have concluded that
inserting cloaking elements every 5-12 generators will successfully block this attack. It should be
noted that the approaches to removing cloaking elements required the attacker to be able to reduce
the problem to a conjugacy search problem; finding concealed cloaking elements in the encoded
message does not fit into that effort.

9. Brute Force Attacks

Brute force security level for each Private Key: In order to choose private keys of security
level = SL that defeat a brute force attack, which enumerates all possible expressions in the braid
generators, we need to analyze the set of braids in BN of a given length ` and try to assess how
large this set is. Being as conservative as possible, at a minimum, the brute force security level for
the signer’s private key pair will be the brute force security level of a single private key. Letting
WN (`) denote the number of distinct braid words of length ` in BN , the most basic estimate for
WN (`) is given by

WN (`) ≤ (2(n− 1))
`
.

This trivial bound does not take into account the fact that the braid relations, particularly the
commuting relations, force many expressions to coincide. Furthermore, the commuting relations
bi bj = bj bi |i − j| ≥ 2, allow us to write products of generators far enough apart in weighted
form, i.e., given bi bj where |i− j| ≥ 2, we can assume i > j.

To start analyzing the situation we work in B5, we enumerate words of length 2 starting with
a given generator: b1 b±12 , b1 b1, b2 b±13 , b2 b2, b2 b±11 , b3 b±14 , b3 b3, b3 b±12 , b3 b±11 ,
b4 b4, b4 b

±1
3 , b4 b

±1
2 , b4 b

±1
1 . Words of length 2 starting with inverses of the generators are of

course similar, and thus the number of distinct words of length ` = 2 in B5 taking the commuting
relations into account is 44 < (2(5− 1))

2
= 64. In order to obtain a good bound for WN (`), which
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eliminates the redundancy arising from the commuting elements, we require the following function:

wk(k′) =


1 k = k′,

2 k 6= k′ and k′ < N − 1,

0 k′ > N − 1.

Using this notation, the number of words of length 2 in BN is given by

WN (2) = 2

N−1∑
k1=1

k1+1∑
k2=1

wk1(k2),

where the equality holds because the remaining braid relations are longer than length 2.
Moving to words of length `, we have

WN (`) ≤ 2

N−1∑
k1=1

k1+1∑
k2=1

wk1(k2)

k2+1∑
k3=1

wk2(k3) · · ·
k`−1+1∑
k`=1

wk`−1
(k`).

This is just an upper bound on the number of braids of length ` but it does represent what an
attacker would have to do to be certain that all possibilities are checked. At present, the above
method gives the best protocol known for generating braid words of length ` with the least over
counting. There is no closed formula for the number of distinct braids of length `; in fact the
problem is NP hard [41].

Hence we are reduced to finding a lower bound for the right hand side above, which can be done
as follows:

2

N−1∑
k1=1

k1+1∑
k2=1

wk1(k2)

k2+1∑
k3=1

wk2(k3) · · ·
k`−1+1∑
k`=1

wk`−1
(k`) ≥ 2`

N−1∑
k1=1

k1+1∑
k2=1
k2 6=k1

k2+1∑
k3=1
k3 6=k2

· · ·
k`−1+1∑
k`=1
k` 6=k1

1

= 2`
N−1∑
k1=1

k1∑
k2=1

k2∑
k3=1

· · ·
k`−1∑
k`=1

1 =
2`

`
· (N − 1)

(
`− 2 +N
N − 1

)
,

where
(
`−2+N
N−1

)
denotes the binomial symbol.

Thus, in order to defeat the brute force search at a security level = SL, the signer’s private key
must be a braid word of length ` which satisfies:

SL ≥ log2

(
2`

`
· (N − 1)

(
`− 2 +N
N − 1

))
.

Next, we may use Stirling’s asymptotic formula for the Gamma function to obtain a lower bound

for 2`

` · (N − 1)

(
`− 2 +N
N − 1

)
. The final result is

SL > log2

(
(2`/`) · `(N−1))

(N − 1)!

)
for fixed N as ` → ∞. To find the length ` associated to a given security level SL, one may apply

Newton’s method to solve the equation: `+ (N − 2) log2(`) = SL+ log2

(
(N − 1)!

)
. For N = 10

this results in ` = 95 for SL=128, and ` = 213 for SL=256.
14



An alternative brute force attack would proceed by starting with the known permutation of a
private key and look at the collection of inverse images of said permutation in the braid group.
To prevent such an approach from being effective we must ensure that this search space of inverse
images is sufficiently large. If two braids have the same associated permutation, they must differ
by an element in the pure braid subgroup. Thus to ensure we are choosing private keys sufficiently
long for our security level SL, each private key must be as long as the lift of a permutation times a
sufficiently long expression in the pure braid generators.

The pure braid subgroup of BN is generated [25] by the set of N(N − 1)/2 braids given by

(12) gi,j = bj−1bj−2 · · · bi+1 · b2i · b−1i+1 · · · b
−1
j−2b

−1
j−1, 1 ≤ i < j ≤ N.

The relations for the pure braid subgroups are given by

g−1r,s gi,jgr,s =


gi,j , if i < r < s < j or r < s < i < j,

gr,jgi,jg
−1
r,j , if r < i = s < j,

gr,jgs,jgi,jg
−1
s,j g

−1
r,j , if r = i < s < j,

gr,jgs,jg
−1
r,j g

−1
s,j gi,jgs,jgr,jg

−1
s,j g

−1
r,j , if r < i < s < j,

see [25] for details.
Given the nature of the above defining relations, a reasonable estimate for the number of words

of length L in the pure braid generators is thus given by

(2 ·N(N − 1)/2)
L

= (N(N − 1))L,

and hence the security level can be estimated to be

log2((N(N − 1))L) = L · log2(N(N − 1)).

In the case N = 10, to obtain a security level of SL= 128, we would need L = 20 and SL= 256
would require L = 40. We experimentally determined that the average length of lifting a random
permutation with N = 10 results in a braid of length 40 (with a standard deviation of 12). Further,
we experimentally determined that on average a word of length 20 in the purebraid generators results
in an average 108 Artin generators (with a standard deviation of 24), which gives us a private key
of length ≈ 148. Using 40 purebraid generators results in an average 215 (with standard deviation
25), which gives us a private key of length ≈ 255. These private key lengths, being slightly larger
that those obtained from the first brute force attack, will suffice to prevent both of the brute force
attacks on the private keys.

Search space of each Public Key Pub(S): Recall that the signer’s public key is given by the
pair: Pub(S) =

(
P(w),P(w′)

)
. When this is evaluated with the specified choices of BN and Fq it

results in two N × N matrices each with q possible elements for every entry. The last row will
consist of zeros with the exception of the final entry on the bottom right. Thus an estimate for the
number of possible matrices appearing in public keys is given by

qN(N−1)+1 = qN
2−N+1.

The search space for all such matrices is again the square of this lower bound. At present, the only
known way to determine Priv(S) from Pub(S) is a brute-force search.
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Brute Force Removal of Cloaking Elements. If one knows the core of a cloaking element then
one could attempt a brute-force attack to remove it from a braid. The simplistic attack proceeds
as follows:

(1) Start at the first element in the braid
(2) Insert the inverse of the cloaking core at that point
(3) Run Dehornoy to reduce the braide
(4) Check if the overall length of the braid had a significant reduction
(5) If not, go to the next position and return to step 2.

Our testing has showed that different cloaking cores have significantly varying resistance to this
type of attack. For example, the earlier, simplistic cores like b±4i can be removed by brute force
25% of the time3 when running in B10! Worst case, if one were guessing, one would only need to try
all 18 possible cores at every position within the braid. The current set of cloaking cores proposed
(see Appendix A), however, only have a 2−10 chance of being removable in B10. This means if you
have a sample braid and know the core being used, you only have a 2−10 chance of being able to
remove the cloaking element. In other words, if you know the exact core being used then you will
need to test over 1000 signatures before you will be able to remove it.

Note that this works only because the core is the center of a conjugate. This means that it can
be made arbitrarily difficult by nesting cloaking elements. One can generate a cloaking element
and then place another cloaking element in either the left or right side of the conjugating material.
When this is done, one must remove both cloaking elements in order to proceed, which means there
is a 2−20 chance of being able to remove both.

Moreover, all of this presupposes the attacker knows the exact cloaking core in use. However,
when we add all the possible cores as shown in Equations 14, 15, and 16, there are at a minimum

N∑
k=5

(k − 2) · 2(k−2)

+

10∑
k=8

(k − 2)

7∑
`=5

`< k−3

2 ·
(

(k − `− 2) · (`− 2) · 2(`−1) · 2(k−`−3)
)

+
(
N − 1

)L2−θ
5+k · N · 2

L1+2

L1
·
(
L1 + 3

4

)
·
k∏
j=1

(
4 + j

)
possible cloaking cores to choose from, and an attacker would need to try all of them.

Note that the number of cores of a given length L grows exponentially in L. Leveraging both of
these cases, by adjusting the various possible parameters, the signature generator can make removal
of cloaking elements arbitrarily difficult for an attacker.

Quantum Resistance. We now quickly explore the quantum resistance of WalnutDSA. As shown
in §8, the security of WalnutDSA is based on the hard problem of reversing E-Multiplication. The
underlying math is intimately tied to the infinite non-abelian braid group that is not directly
connected to any finite abelian group. We will show that this lends strong credibility for the choice
of WalnutDSA as a viable post-quantum digital signature protocol.

3We also think this explains why the Kotov–Menshov–Ushakov attack was as successful as it was
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The Hidden Subgroup Problem HSP on a group G asks to find an unknown subgroup H using
calls to a known function on G which is constant on the cosets of G/H and takes different values on
distinct cosets. Shor’s [44] quantum attack breaking RSA and other public key protocols such as
ECC are essentially equivalent to the fact that there is a successful quantum attack (the quantum
Fourier transform QFT) on the HSP for finite cyclic and other finite abelian groups (see [34]).

There are at least two possible ways to try to use quantum methods for HSP to attack the
underlying algebra: (i) one can try to use HSP in the braid group itself, for instance as an approach
to CCSP, or (ii) one can try to use HSP in the general linear group GL(N,Fq), for instance to
identify the image of BN under E-Multiplication, or to identify the images of other subroups, such
as the pure braids.

Both possibilities are far beyond what is currently known for HSP. First of all, the braid group
is infinite, and no progress has been made for HSP for infinite groups. Moreover, every non-trivial
element in BN has infinite order, and in particular the braid group does not contain any non-
trivial finite subgroups. Hence there does not seem to be any viable way at present to work with
quantum solutions for HSP in BN . Second, some progress has been made in quantum solutions
to HSP for certain nonabelian finite groups, such as semidirect products of abelian groups, or
groups with the property that all subgroups are normal. However progress for groups with large
degree representations such as GL(N,Fq) and other finite groups of Lie type has been more limited.
Currently the best one knows how to do is to construct subexponential circuits to compute the QFT
on such groups [37]. This does not give an efficient algorithm to apply quantum attacks to such
groups.

Given an element

(13) β = bε1i1 b
ε2
i2
· · · bεkik ∈ BN ,

where ij ∈ {1, . . . , N − 1}, and εj ∈ {±1}, we can define a function f : BN → GL(N,Fq) where
f(β) is given by the E-Multiplication (1, 1) ? (β, σβ) and σβ is the permutation associated to β.
Now E-Multiplication is a highly non-linear operation. As the length k of the word β increases, the
complexity of the Laurent polynomials occurring in the E-Multiplication defining f(β) increases
exponentially. It does not seem to be possible that the function f exhibits any type of simple
periodicity, so it is very unlikely that inverting f can be achieved with a polynomial quantum
algorithm.

Finally, we consider Grover’s quantum search algorithm [23] which can find an element in an

unordered N element set in time O
(√
N
)
. Grover’s quantum search algorithm can be used to find

the private key in a cryptosystem with a square root speed-up in running time. Basically, this cuts
the security in half and can be defeated by doubling the key size. This is where E-Multiplication
shines. When doubling the key size one only doubles the amount of work as opposed to RSA, ECC,
etc. where the amount of work is quadrupled. Note that almost all of the running time of signature
verification in WalnutDSA is taken by repeated E-Multiplications.

10. Conclusion

In this paper we presented an in-depth discussion of WalnutDSA, a quantum-resistant, group-
theoretic public-key digital signature method with fast performance on verification. We show how
to construct WalnutDSA keys and signatures, and how to validate the signature against the public
key. We introduced cloaking elements and provide multiple means to generate them. Finally, we
enumerated all known attacks against WalnutDSA and show how the current choices in parameters
and cloaking elements defeat all known attacks.
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Appendix A. The Splicing Method

Recall from Proposition 4.3, that given N ≥ 10, 1 ≤ x1 < x2 < · · · < xµ ≤ N , and exponents
ε`k ∈ {+1,−1}, the braid

w = b
εx2−1

x2−1 b
εx2−2

x2−2 · · · b
εx1+1

x1+1 bx1
b
−εx1+1

x1+1 · · · b−εx2−1

x2−1

· bεx3−1

x3−1 b
εx3−2

x3−2 · · · b
εx2+1

x2+1 bx2 b
−εx2+1

x2+1 · · · b−εx3−1

x3−1

· · · · · bεxµ−1

xµ−1 b
εxµ−2

xµ−2 · · · b
εxµ+1

xµ−1+1 bxµ−1 b
−εxµ+1

xµ−1+1 · · · b
−εxµ−1

xµ−1 ,

is a core of a cloaking element for the identity (1, 1) with exponent 2µ

(1, 1) ? w2µ = (1, 1),

provided the identity

tx1 tx2 · · · txµ = −1,

holds. We will refer to the core w as a µ–core with xµ − x1 + 1 strands.
In this Appendix we will work with the cases of µ = 3, 4 and introduce a method of splicing one

core into another to produce a large set of cloaking elements. Focusing first on the case of µ = 3,
we simplify the notation and assume x1 = 1, x2 = x, and x3 = k (the more general case is entirely
similar); we have

1 < x < k.
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Thus suppose that w is a 3–core with k strands which by definition takes the form,

w = b
εx−1

x−1 b
εx−2

x−2 · · · b
ε2
2 b1 b

−ε2
2 · · · b−εx−1

x−1 · bεk−1

k−1 b
εk−2

k−2 · · · b
εx+1

x+1 bx b
−εx+1

x+1 · · · b−εk−1

k−1 .

For fixed x, k there are 2(k−3) possible 3–cores in the above form. Since there are (k − 2) ways to
choose x, the number of cores in the above form is given by (k − 2) · 2(k−3). Since the inverse of a
core is again a core, this method produces

(14) 2(k − 2) · 2(k−3) = (k − 2) · 2(k−2),
cores. Consider the strands emerging from the collection of points

P (w) = {2, . . . , x− 1, x+ 1, . . . , k − 1}.
Each of these strands begins and ends at the same point. A ribbon within the braid w is a collection
of strands associated to a subset of consecutive elements R = {y1, y2, . . . , y`} ⊂ P (w), where the
initial exponents of all the byj appearing in w are equal:

εy1 = εy2 = · · · = εy` .

The strands emerging from {y1, y2, . . . , y`} will all either lie behind or in front of the strands
emerging from the three strands emerging from 1, x, k. Further the set R can lie to the left of x,
the right of x, or contain points from which lie both left and right of x.

Figure 2.
b−15 b−14 b−13 b−12 b1 b2 b3 b4 b5 b6

Figure 3.
b1 b
−1
6 b−15 b−14 b−13 b2 b3 b4 b5 b6

Figure 4.
b−14 b−13 b−12 b1 b2 b3 b4 b5 b6 b7 b

−1
6 b−15

We are now in a position to splice in a 3–core with ` strands into the 3–core with k strands, w,
to obtain a new core with k strands and exponent 6. In general, if there is a section of a braid
that takes the form of ` consecutive parallel strands, it is natural to insert an ` strand braid in that
region; we term this operation splicing and begin with two concrete examples. First consider the
core with T–identity t1 t5 t9 = −1,

w =
(
b−14 b−13 b2 b1 b

−1
2 b3 b4

)
·
(
b8 b
−1
7 b−16 b5 b6 b7 b

−1
8

)
.

Here P (w) = {2, 3, 4, 6, 7, 8} and then we can see that R = {3, 4, 6, 7} forms a ribbon since the
initial exponent of b3, b4, b6, b7 are all −1. The ribbon that forms allows for a 4 strand 3–core to be
spliced in which takes the form, for example,

v = b−15 b6 b5 b7,

and the final core obtained is given by

x =
(
b−14 b−13 (b−15 b4 b5 b6) b2 b1 b

−1
2 b3 b4

)
·
(
b8 b
−1
7 b−16 b5 b6 b7 b

−1
8

)
.
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The T–identity for the core x is given by

t1 t5 t9 = −1, t3 t6 t7 = −1.

Figure 5. b−14 b−13 b−15 b4 b5 b6 b2 b1 b
−1
2 b3 b4 b8 b

−1
7 b−16 b5 b6 b7 b

−1
8

In the second example we have the 3–core, b3 b4, spliced into a core where a three strand ribbon
lies entirely to the left of x:

Splice(w, v) =
(
b−14 b−13 b−12 (b3 b4) b1 b2 b3 b4

)
·
(
b8 b7 b6 b5 b

−1
6 b−17 b−18

)
.

Figure 6. b−14 b−13 b−12 b3 b4 b1 b2 b3 b4 b8 b7 b6 b5 b
−1
6 b−17 b−18

To write down the general case we begin by breaking R into the disjoint union

R = R1 ∪R2,

where R1 = {y1, . . . , yi}, R2 = {yj , . . . , y`}. Remark that either side of the above disjoint union
could be empty making the ribbon appear on one side of x (if R2 = ∅ then yi = y` and likewise if
R1 = ∅ then y1 = yj). For ease of notation let

δ = εy1 = εy2 = · · · = εy` .
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Choose a 3–core, v, involving the generators {by1+1, . . . , by`−1}; we use the functional notation
v = v(by1+1, . . . , by`−1), and we note that T–identity is given by

ty1 tx0
ty` = −1,

for some x0 ∈ {y1 + 1, . . . , y` − 1}. The output of the splicing method is given in the following
proposition.

Proposition A.1. With all the notation above in place, the core obtained by splicing the 3–core v
into the 3–core

w = b
εx−1

x−1 b
εx−2

x−2 · · · b
ε2
2 b1 b

−ε2
2 · · · b−εx−1

x−1 · bεk−1

k−1 b
εk−2

k−2 · · · b
εx+1

x+1 bx b
−εx+1

x+1 · · · b−εk−1

k−1

is given as follows:

(i) If R1, R2 6= ∅, we have yi = x− 1, yj = x+ 1 and

Splice(w, v) = bδyi b
δ
yi−1 · · · b

δ
y1v(by1+1, . . . , by`−1)b

εy1−1

y1−1 · · · b
ε2
2 b1 b

−ε2
2 · · · b−εy1−1

y1−1 b−δy1 · · · b
−εyi
yi

· bεk−1

k−1 · · · b
ε`+1

y`+1 b
δ
y`
· · · bδyj bx b

−δ
yj · · · b

−δ
y`
b
−ε`+1

y`+1 b
−εk−1

k−1

(ii) If R1 6= ∅, R2 = ∅, we have

Splice(w, v) = b
εx−1

x−1 · · · b
εyi+1

yi+1 b
δ
yi b

δ
yi−1 · · · b

δ
y1 v(by1+1, . . . , byi) b

εy1−1

y1−1 · · · b
ε2
2 b1·

b−ε22 · · · b−εy1−1

y1−1 b−δy1 · · · b
−δ
yi b

−εyi+1

yi+1 · · · b−εx−1

x−1

· bεk−1

k−1 b
εk−2

k−2 · · · b
εx+1

x+1 bx b
−εx+1

x+1 · · · b−εk−1

k−1

(iii) If R1 = ∅, R2 6= ∅, we have

Splice(w, v) = b
εx−1

x−1 b
εx−2

x−2 · · · b
ε2
2 b1 b

−ε2
2 · · · b−εx−1

x−1 ·

· bεk−1

k−1 · · · b
ε`+1

y`+1 v(byj , . . . , by`−1) bδy` · · · b
δ
yj b

εyj−1

yj−1 · · · b
εx+1

x+1 bx

b
−εx+1

x+1 · · · b
−εyj−1

yj−1 b−δyj · · · b
−δ
y`
b
−ε`+1

y`+1 b
−εk−1

k−1 .

A second method of splicing will involve splicing a 4–core into a 3–core. In the above examples
a 3–core was spliced onto a ribbon that lay either behind or in front of the strands originating from
the points 1, x, k in the 3–core being altered. It’s natural to ask what happens when one if the
strands in the ribbon originates, for example from x. Thus we consider, for example, the 3–core
with k = 6 strands and x = 5:

w = b−14 b−13 b−12 b1 b2 b3 b4 b5,

whose T–identity is t1t5t6 = −1. Next consider the 4–core

v = b2 b3 b4,

whose T–identity is t2t3t4t5 = −1. When we splice v4 into w,

Splice(w, v4) = b−14 b−13 b−12 (b2 b3 b4)4 b1 b2 b3 b4 b5,

we obtain a new core with exponent 6 whose T–identity takes the form

t1t5t6 = 1, t2t3t4 = −1.
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Figure 7. b−14 b−13 b−12 (b2b3b4)4b1b2b3b4b5

Similarly, if we choose the 4–core v = b3 b4 b5, whose T–identity is t3t4t5t6 = −1, splicing v4 into w

Figure 8. b−14 b−13 b−12 (b3b4b5)4b1b2b3b4b5

Splice(w, v4) = b−14 b−13 b−12 (b3 b4 b5)4 b1 b2 b3 b4 b5,

we obtain a new core with exponent 6 whose T–identity again takes the form

t1t5t6 = 1, t2t3t4 = −1.

A slightly different example begins with the 3–core w = b−13 b−12 b1 b2 b3 b
−1
5 b4 b5, and again v =

b3 b4 b5.

Here we obtain a new core with exponent 6,

w = b−13 b−12 b−15 (b3 b4 b5)4 b1 b2 b3 b4 b5,

where the T–identities are given by

t1t4t6 = 1, t2t3t5 = −1.
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Figure 9. b−13 b−12 b−15 (b3b4b5)4b1b2b3b4b5

The commonality in the above examples is the presence of one of the strands which begin at x (or k
in the latter case) eliminates that T–value in the T–identity (said strand is purple in figures 8,9,10).

One approach to understanding these core is demonstrated as follows: returning to the first
example

Splice(w, v4) = b−14 b−13 b−12 (b2 b3 b4)4 b1 b2 b3 b4 b5,

where w = b−14 b−13 b−12 b1 b2 b3 b4 b5 and v = b2 b3 b4, we begin by observing

Splice(w, v4) = Splice(w, u4) = b−14 b−13 b−12 b1 b2 b3 b4 b5 ( b1 b2 b3)4,

where u = b1 b2 b3.

Figure 10. b−14 b−13 b−12 b1b2b3b4b5(b1b2b3)4

Consider the following set of an alternative set of generators for the braid group BN :

yi = bibi+1 · · · bN−1,

which satisfy the identity

yj yi = yi yj−1 y
−1
N−1, if i < j.
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Specializing to our N = 6 case, we simplify Splice(w, u4)3 as follows:

Splice(w, u4)3 = y61 y
3
2 y

6
4 y
−3
2 .

Observe that since y61 generates the center of B6, and hence for any power q,

Splice(w, u4)3q = y6q1 y32 y
6q
4 y−32 .

Now the T–identity which will make y61 a core with exponent 2 is

t1t2t3t4t5t6 = −1.

Likewise T–identity which will make y64 a core with exponent 2 is t4t5t6 = −1. Letting the inverse
of the permutation of y32 act on t4t5t6 = −1 we obtain t2t3t4 = −1,

σ−1

y32

(
t4t5t6 = −1

)
yields

(
t2t3t4 = −1

)
.

and in combination with t1t2t3t4t5t6 = −1, we deduce the T–identity for Splice(w, u4)3: Splice(w, u4)3

is a core with exponent 2 and T–identities

t1t2t3t4t5t6 = −1, t2t3t4 = −1,

=⇒ t1t5t6 = 1, t2t3t4 = −1.

The above analysis serves as guide to generating even more cloaking elements. Again starting
with N = 6 we can looks at braids of the form

y61 z y
6
4 z
−1 = (b1 b2 b3 b4 b5)6 · z (b4 b5)6 z−1

where z is a braid that doesn’t commute with (b4 b5). In practice we would choose z so that its
associate permutation σz does not fix the set {4, 5, 6}.

To move from k = 6 to a larger k we can thread additional strands into a core of the type in such
a way that the core itself is not altered. To accomplish this, suppose we would like to generate a
core with k = 8 by threading additional strands in at points 3, 6. Begin by choosing a permutation
in σ ∈ S8 which maps 3→ 7, 6→ 8. Next choose a braid β ∈ B8 which is a lift of σ. Viewing the
braid y61 z y

6
4 z
−1 ∈ B8, the conjugate

β y61 z y
6
4 z
−1 β−1,

will be a core with k = 8 strand of exponent 2 with T–identities

σ−1
β·z

(
t4t5t6 = −1

)
, σ−1

β

(
t1t2t3t4t5t6 = −1

)
.

Appendix B. Some combinatorics of the splicing method

Having generated two types of cores via a splicing technique, what remains is to obtain a lower
bound on the size of the set of generated cores. With this goal in mind we begin with the cores
described in Proposition A.1 of Appendix A. Let N ≥ 10, and integers (points) x, k chosen so that
1 < x < k ≤ N. Thus, we begin again with w a 3–core with k strands) which by definition takes
the form,

w = b
εx−1

x−1 b
εx−2

x−2 · · · b
ε2
2 b1 b

−ε2
2 · · · b−εx−1

x−1 · bεk−1

k−1 b
εk−2

k−2 · · · b
εx+1

x+1 bx b
−εx+1

x+1 · · · b−εk−1

k−1 ,

and the set

P (w) = {2, . . . , x− 1, x+ 1, . . . , k − 1}.
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Assuming we have an ` strand ribbon

R = {y1, y2, . . . , y`} ⊂ P (w),

on which to splice an ` strand 3–core v, the question becomes how many ways can the ribbon appear
in P (w), how many unconstrained strands will remain, and how many ` strand 3–cores v are there
to splice in. It’s clear that the number of ways to fit an ` strand ribbon is given by

k − `− 2,

and the number of strands that are left without constraint on their exponent is given by

k − `− 3.

As we saw in Appendix A, the number of ` strand 3–cores is given by (`− 2) · 2(`−1), and in each
such core there are (N − 2) ways to choose the point 1 ≤ x ≤ N − 2. Further, each such core
can be spliced into a ribbon which lies either behind or in front of the original k strand 3–core.
In summation, the number of cores generated with this first splicing method where we allow, for
example, 8 ≤ k ≤ 10 and 5 ≤ ` ≤ 7 is given by,

(15)

10∑
k=8

(k − 2)

7∑
`=5

`< k−3

2 ·
(

(k − `− 2) · (`− 2) · 2(`−1) · 2(k−`−3)
)
≈ 213.7.

We move next to the cores where an ` strand 4–core is spliced into a k strand 3–core (where k ≤ 10)
which we saw in Appendix A may take the from

β y61 z y
6
4 z
−1 β−1.

We recall yi = bi · bi+1 · · · · bN−1, z is an element in the subgroup generated by {b2, b3, b4, b5} that
does not commute with y64 . Further, β is a lift of a permutation that maps a set of k − 6 points
to {7, . . . , k} and maps the remaining 6 points to {1, 2, 3, 4, 5, 6}. In order to get a lower bound on
how many such cores we can generate we estimate the number of possible elements z and β that
are bounded by a given length.

To that end, recall the estimate for the number of words of length L in the braid group BN from
§9 which is given by

2L

L
· (N − 1)

(
L− 2 +N
N − 1

)
.

One collection of elements z that will not (in general) commute with y64 are braids of the form
z1 · b3, where z1 is again an element in the subgroup generated by {b2, b3, b4, b5}. We conclude that
the collection of elements z that have expressions as a product of L1 Artin generators is bounded
below by

2L1+2

L1
·
(
L1 + 3

4

)
.

A lower bound for the number of choices for the element β can be obtained as follows. Let k be
the number of strands being threaded into 6 strand braid y61 z y

6
4 z
−1. Then, since 0 ≤ k ≤ 4, we

see that there are
k∏
j=1

(
(6− 2) + j

)
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possibilities. The permutation σβ associated with β, when lifted to the braid group, can be modified
by a pure braid of some fixed length making it possible to obtain a rough lower bound on the number
of elements β. Assuming we are modifying by a pure braid which is expressed as a word of length
q in the pure braid generators, the length as a word in the Artin generators will on average have
length about q(N−1). Hence, the number of ways to generate the requisite β (which we assume can
be written as a product of L2 Artin generators and is obtained by lifting a permutation σβwhich is
written as a product of θ transpositions above) is given by

k∏
j=1

(6 + j − 2) ·N(N − 1)
(L2−θ)
6+k−1 .

We observe that by restricting our attention to the case where θ = 5k then the collection of
generated braids is on the order of 232.

To conclude this discussion we state the following proposition:

Proposition B.1. Let N ≥ 6. Consider cores of BN that take the form

β y61 z y
6
4 z
−1 β−1

where

• β ∈ BN is as discussed above and has an expression of length L2 in Artin generators;

• θ is the minimal number of ways of writing σβ as a product of transpositions;

• z is an element in the subgroup generated by {b2, b3, b4, b5} as discussed above which has an
expression of length L1 in in Artin generators.

Then a lower bound for the number of such cores is given by

(16)
(
N − 1

)L2−θ
5+k · N · 2

L1+2

L1
·
(
L1 + 3

4

)
·
k∏
j=1

(
4 + j

)
.
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