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Abstract. This paper presents an in depth discussion of WalnutDSA, a quantum resistant

public-key digital signature method based on the one-way function E-multiplication. A key fea-

ture of WalnutDSA is that it provides very efficient means of validating digital signatures which is
essential for low-powered and constrained devices. This paper presents an in-depth discussion of

the construction of the digital signature algorithm, and delves deeply into the underlying mathe-

matics that facilitates analyzing the security of the scheme. When implemented using parameters
that defeat all known attacks, WalnutDSA is among the fastest quantum resistant signature ver-

ification methods; it performs orders of magnitude faster than ECC, even on low-end embedded

hardware. WalnutDSA delivers a 12-25x speed improvement over ECDSA on most platforms, and
a 31x speed improvement on a 16-bit microcontroller, making it an ideal solution for low-resource

processors found in the Internet of Things (IoT).

Group Theoretic Cryptography, Digital Signature, E-multiplication, Braids, Internet of Things,
IoT

1. Introduction4

Digital signatures provide a means for one party to create a document that can be sent through5

a second party and verified for integrity by a third party. This method ensures that the first6

party created the document and that it was not modified by the second party. Historically, digital7

signatures have been constructed using various number-theoretic, public-key methods like RSA,8

DSA, and ECDSA. These methods are inherently not very efficient when run on platforms with9

constrained processors (16-bit or even 8-bit), or systems with limited space or energy.10

Digital signatures based on algorithmically hard problems in group theory were introduced in11

2002 by Ko, Choi, Cho, and Lee [31] and in 2009 by Wang and Hu [48]. The approach of Ko, Choi,12

Cho, and Lee utilized a variation of the conjugacy problem in non-commutative groups as a basis13

for security, while Wang and Hu [48] opted for the hardness of the root problem in braid groups14

(see also [29]). The attacks introduced in [19], [20], [22], and [27] suggest that the schemes by Ko15

et al. and Wang and Hu may not be practical over braid groups in resource limited settings.16

The group-theoretic one-way function E-multiplication was first introduced in 2005 by An-17

shel, Anshel, Goldfeld, and Lemieux [6]. Based on a representation of the Artin braid group,18

E-multiplication enables the effective use of a non-abelian infinite group and can serve as a build-19

ing block for a range of cryptographic protocols which are, by construction, quantum-resistant20

due to the braid group being an infinite non-abelian group. Other examples of applications of21

E-multiplication include the cryptographic hash function AEHash [3], which has been implemented22

using very little code space on a 16-bit platform [4], and the Ironwood Meta Key agreement proto-23

col [5].24
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Implementations of E-multiplication in various instances have shown that code space is small1

and runtime is extremely rapid, with constructions using E-multiplication outperforming competing2

methods, especially in small, constrained devices.3

2. Colored Burau Representation of the Braid Group4

We begin by recalling the colored Burau representation. For N ≥ 2, let BN denote the N -strand
braid group with Artin generators {b1, b2, . . . , bN−1}, subject to the following relations:

bibi+1bi = bi+1bibi+1, (i = 1, . . . , N − 2),

bibj = bjbi, (|i− j| ≥ 2).

Thus any β ∈ BN can be expressed as a product of the form5

(1) β = bε1i1 b
ε2
i2
· · · bεkik ,

where ij ∈ {1, . . . , N − 1}, and εj ∈ {±1}. Note that β is not uniquely represented by (1) since the6

braid group is palpably not free.7

Let SN be the group of permutations on N letters. Each braid β ∈ BN determines a permutation8

in SN as follows. For 1 ≤ i ≤ N − 1, let σi ∈ SN be the ith simple transposition, which maps9

i→ i+ 1, i+ 1→ i, and leaves {1, . . . , i− 1, i+ 2, . . . , N} fixed. Then the map bi 7→ σi extends to10

a surjective homomorphism BN → SN . A braid is called pure if its corresponding permutation is11

trivial (i.e., the identity permutation). Clearly the set of pure braids coincides with the kernel of12

the map BN → SN .13

Let Fq denote the finite field of q elements, and for variables t1, t2, . . . , tN , let

Fq[t1, t−11 , . . . , tN , t
−1
N ]

denote the ring of Laurent polynomials in t1, t2, . . . , tN with coefficients in Fq. We introduce the
colored Burau representation

ΠCB : BN → GL
(
N,Fq[t1, t−11 , . . . , tN , t

−1
N ]
)
o SN .

For each Artin generator bi we define the N ×N colored Burau matrix CB(bi) generator as follows14

[39]: if i = 1, we put15

(2) CB(b1) =



−t1 1 0 · · · 0

0 1 0 · · ·
...

... 1
. . .

1


,

and for 2 ≤ i ≤ N − 1, we define CB(bi) by16

(3) CB(bi) =



1
. . .

ti −ti 1
. . .

1

 ,
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where the indicated variables appear in row i. We similarly define CB(b−1i ) by modifying (3)1

slightly:2

CB(b−1i ) =



1
. . .

1 − 1
ti+1

1
ti+1

. . .

1

 ,

where again the indicated variables appear in row i, and as above if i = 1 the leftmost 1 is omitted.3

Recall that each bi has an associated permutation σi. We may then associate to each braid
generator bi (respectively, inverse generator b−1i ) a colored Burau/permutation pair (CB(bi), σi)

(resp., (CB(b−1i ), σi)). We now wish to define a multiplication of such colored Burau pairs. To
accomplish this, we require the following observation. Given a Laurent polynomial f(t1, . . . , tN )
in N variables, a permutation in σ ∈ SN can act (on the left) by permuting the indices of the
variables. We denote this action by f 7→ σf :

σf(t1, t2, . . . , tN ) = f(tσ(1), tσ(2), . . . , tσ(N)).

We extend this action to matrices over the ring of Laurent polynomials in the ti by acting on each
entry in the matrix, and denote the action by M 7→ σM . The general definition for multiplying two
colored Burau pairs is now defined as follows: given b±i , b

±
j , the colored Burau/permutation pair

associated with the product b±i · b
±
j is

(CB(b±i ), σi) · (CB(b±j ), σj) =
(
CB(b±i ) · (σiCB(b±j )), σi · σj

)
.

We extend this definition to the braid group inductively: given any braid

β = bε1i1 b
ε2
i2
· · · bεkik ,

as in (1), we can define a colored Burau pair (CB(β), σβ) by

(CB(β), σβ) =

(CB(bε1i1 ) · σi1CB(bε2i2 ) · σi1σi2CB(bε3i3 ) · · · σi1σi2 ···σik−1CB(bεkik ), σi1σi2 · · ·σik).

The colored Burau representation is then defined by

ΠCB(β) := (CB(β), σβ).

One checks that ΠCB satisfies the braid relations and hence defines a representation of BN .4

3. E-multiplication5

E-multiplication was first introduced in [6] as a one-way function used as a building block to
create multiple cryptographic constructions. We recall its definition here. A set of T-values is
defined to be a collection of non-zero field elements

{τ1, τ2, . . . , τN} ⊂ F×q .

Given a set of T-values, we can evaluate any Laurent polynomial f(t1, t2, . . . , tN ) to obtain an
element of Fq:

f(t1, t2, . . . , tN ) ↓t-values := f(τ1, τ2, . . . , τN ).

We extend this notation to matrices over Laurent polynomials in the obvious way.6
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With all these components in place, we can now define E-multiplication. By definition, E-
multiplication is an operation that takes as input two ordered pairs,

(M,σ0), (CB(β), σβ),

where β ∈ BN and σβ ∈ SN as before, and where M ∈ GL(N,Fq), and σ0 ∈ SN . We denote
E-multiplication with a star: ?. The result of E-multiplication, denoted

(M ′, σ′) = (M,σ0) ? (CB(β), σβ),

will be another ordered pair (M ′, σ′) ∈ GL(N,Fq)× SN .1

We define E-multiplication inductively. When the braid β = b±i is a single generator or its
inverse, we put

(M,σ0) ?
(
CB(b±i

)
, σb±i

) =
(
M · σ0

(
CB(b±i

)
) ↓t-values, σ0 · σb±i

)
.

In the general case, when β = bε1i1 b
ε2
i2
· · · bεkik , we define2

(4) (M,σ0) ? (CB(β), σβ) = (M,σ0) ? (CB(bε1i1 ), σbi1 ) ? (CB(bε2i2 ), σbi2 ) ? · · · ? (CB(bεkik ), σbik ),

where we interpret the right of (4) by associating left-to-right. One can check that this is indepen-3

dent of the expression of β in the Artin generators.4

Convention: Let β ∈ BN with associated permutation σβ ,∈ SN . Let M ∈ GL(N,Fq) and σ ∈ Sn.5

For ease of notation, we let (M,σ) ? β := (M,σ) ? (CB(β), σβ).6

The discussion above can be summarized as follows: E-multiplication is an action of BN on
GL(N,Fq)× SN via a representation into a semidirect product(

GL(N,Fq)× SN
)
?ΠCB(BN ) −→

(
GL(N,Fq)× SN

)
.

Given β ∈ BN , we define P(β) to be the image of (IdN , IdSN ) ∈
(
GL(N,Fq) × SN

)
under E-

multiplication by β:

P(β) :=
(
IdN , IdSN

)
? β,

where IdN is the N ×N identity matrix and Id
SN
∈ SN is the identity permutation.7

The security of WalnutDSA is based, in part, on the following highly non-linear problem that8

we believe to be computationally infeasible for sufficiently large key and parameter sizes:9

The REM Problem (Reversing E-multiplication is hard) Consider the braid group BN and
symmetric group SN with N ≥ 10. Let Fq be a finite field of q elements,and fix a set of non-zero T -
values {τ1, τ2, . . . , τN} in F×q , the invertible elements of Fq. Given a pair (M,σ) ∈ (GL(N,Fq), SN )
where it is stipulated that

(M,σ) = P(β)

for some unknown braid β ∈ BN (with sufficiently long BKL normal form), then it is infeasible to10

determine a braid β′ such that (M,σ) = P(β′).11

Support for the hardness of reversing E-multiplication can be found in [40] which studies the12

security of Zémor’s [51] hash function h : {0, 1}∗ → SL2(Fq), with the property that h(u v) =13

h(u)h(v), where h(0), h(1) are fixed matrices in SL2(Fq) and uv denotes concatenation of the bits14

u and v. For example a bit string {0, 1, 1, 0, 1} will hash to h(0)h(1)h(1)h(0)h(1). Zémor’s hash15

function has not been broken since its inception in 1991. In [40] it is shown that feasible cryptanalysis16
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for bit strings of length 256 can only be applied for very special instances of h. Now E-multiplication,1

though much more complex, is structurally similar to a Zémor type scheme involving a large finite2

number of fixed matrices in SL2(Fq) instead of just two matrices h(0), h(1). This serves as an3

additional basis for the assertion that E-multiplication is a one-way function.4

4. Cloaking Elements5

The second component of the security of WalnutDSA is based on our ability to explicitly construct6

certain braid words that we term cloaking elements. They are defined as follows.7

Definition 4.1. (Cloaking element) Let σ ∈ SN . An element v ∈ BN is termed a cloaking
element of σ provided v stabilizes (M,σ) under E-muliplication for all M ∈ GL(N,Fq), i.e.,

(M,σ) ? v = (M,σ).

Thus a cloaking element is characterized by the property that it essentially disappears when8

performing E-multiplication. Remark that, by definition, every cloaking element must itself be a9

pure braid braid (see §2). Letting Cloakσ denote the set of all such cloaking elements, we have the10

following proposition:11

Proposition 4.2. The set Cloakσ forms a subgroup of BN that is contained in the pure braid12

subgroup.13

We remark that whether a braid element is a cloaking element depends on the T-values used in14

defining the operation ?. It is clear that cloaking elements must exist: the braid group is infinite15

and any action of an infinite group on a finite set will necessarily have stabilizers. Further, it is16

clear that generating very long cloaking elements is straightforward: starting with an arbitrary17

braid v, first raise v to the order of its associated permutation σv, yielding a purebraid v̄. Then18

raise v̄ to the (generally very large) order of the matrix (1, 1)? σ v̄ (where (1, 1) denotes the identity19

in GL(N,Fq) × SN ). What is not immediately obvious is how to construct cloaking elements20

sufficiently short to be useful. The following proposition provides one technique to construct them,21

and serves as an illustration of the behavior of the action (a paper focusing exclusively on the22

construction and enumeration of cloaking elements will be forthcoming):23

Proposition 4.3. Let N ≥ 10, suppose 1 ≤ x1 < x2 < · · · < xµ ≤ N , and let

w = b
εx2−1

x2−1 b
εx2−2

x2−2 · · · b
εx1+1

x1+1 bx1
b
−εx1+1

x1+1 · · · b−εx2−1

x2−1

· bεx3−1

x3−1 b
εx3−2

x3−2 · · · b
εx2+1

x2+1 bx2
b
−εx2+1

x2+1 · · · b−εx3−1

x3−1

· · · · · bεxµ−1

xµ−1 b
εxµ−2

xµ−2 · · · b
εxµ−1+1

xµ−1+1 bxµ−1 b
−εxµ−1+1

xµ−1+1 · · · b
−εxµ−1−1

xµ−1 ,

where εi ∈ {+1,−1}. Then the following hold:24

• w is braid involving the strands which start at the points {x1, . . . , xµ},25

• Any strand in w that originates at any y ∈ {x1 + 1, . . . , x2 − 1, x2 + 1, . . . , xµ − 1} ends at y,26

• The braid w2µ cloaks for the identity (1, 1) provided the T-value identity

tx1
tx2
· · · txµ = −1,

holds. Further, if z is a braid with associated permutation σ−1, then the conjugate z w2µ z−1 cloaks27

for σ.28

5



The element w in the above proposition is termed the core of the cloak w2µ with exponent 2µ.1

There turn out to be various ways of constructing cores of cloaking elements. To facilitate the flow2

of this paper we defer the lengthy discussion of this topic to Appendices A and B. In all discussions3

that follow we will assume that all methods of generating cores are used; the combinatorics of the4

generation methods will contribute to the security of WalnutDSA.5

The concept of a cloaking element naturally lends itself to the following observation. Fix a braid
β, say

β = bε1i1 · · · b
ε`
i`
,

and choose some integer 1 ≤ k ≤ `. Clearly, β = x1 ·x2 where x1 = bε1i1 · · · b
εk−1

ik−1
and x2 = bεkik · · · b

ε`
i`

,

and we hence for any for any matrix/permutation pair (m0, σ0), we have that

(m0, σ0) ? β = ((m0, σ0) ? x1) ? x2.

Using Proposition 4.3 we can generate a cloaking element v for the product of σ0 ·σx1
where σx1

denotes the permutation associated with x1. By construction, given any matrix M we have that
(M,σ0 · σx1) ? v = (M,σ0 · σx1). Since (m0, σ0) ? x1 takes the form (m0, σ0) ? x1 = (M,σ0 · σx1), we
have that

(m0, σ0) ? β = ((m0, σ0) ? x1) ? x2

= (M,σ0 · σx1
) ? x2 = (M,σ0 · σx1

) ? v ? x2

= ((m0, σ0) ? x1) ? v ? x2 = (m0, σ0) ? x1 ? v ? x2.

Hence we have generated a new braid β′ which contains v,

β′ = x1 · v · x2,
which has the property that (m0, σ0) ? β = (m0, σ0) ? β′. We shall refer to this inserted cloaking6

element as a concealed cloaking element. The above discussion is summarized in the following7

proposition:8

Proposition 4.4. Given a braid β and a matrix/permutation pair (m0, σ0) it is possible to generate9

another braid β′ so that (m0, σ0) ? β = (m0, σ0) ? β′ by randomly inserting a cloaking element for a10

permutation that is not a priori known, i.e., a concealed cloaking element within β. In the case β11

is itself a cloaking element for a given permutation, the resulting β′ will also be a cloaking element12

for the same permutation, but will have a distinct structure from β.13

The process of randomly inserting cloaking elements into a braid can be iterated and we introduce14

the following definition:15

Definition 1.5. Given an element β ∈ BN , the output of κ iterations of randomly inserting16

cloaking elements as described in Proposition 4.4 into the braid β, is defined to be a κ–cloaking of17

β and is denoted by κ(β).18

An interesting remark made by a referee is that given β′ = x1 · v · x2, where v is a cloaking19

element for the permutation σ0σx1 , one can write β′ in the form β′ = (x1vx
−1
1 )x1x2 = (x1vx

−1
1 )β20

with β = x1x2. Hence, we can express β′ in the form β′ = w · β, where w is another (longer) cloak21

of σ0. It follows that κ–cloaking a braid β (which is effective to modify the normal form of β and22

defeat attacks such as the one by Merz and Petit [37]) again results in a braid of the form wβ. It23

should be noted that for large κ the cloaking element w becomes very long, and, further, the search24

space for such cloaking elements is very large (see Appendix B).25
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5. Key Generation for WalnutDSA1

WalnutDSA allows a signer with a fixed private/public-key pair to create a digital signature2

associated with a given message that can be validated by anyone who knows the public key of3

the signer and the verification protocol. To facilitate the method, a central authority generates4

the system wide parameters using a publicly known parameter generation algorithm, and a signer5

S generates its own public and private key pair, denoted (Pub(S), Priv(S)), via a key generation6

algorithm.7

Public System Wide Parameters:8

• An integer N ≥ 10 and associated braid group BN .9

• A message encoding algorithm which is the composition of a cryptographically secure 2η–bit10

hash function H : {0, 1}∗ → {0, 1}2η, and an injective map E : {0, 1}2η → HN , where HN is a free11

subgroup contained in the pure braid group on N strands.12

• A finite field Fq.13

Signer’s Security Parameters:14

The Signer requires a set of parameters used to meet the desired security level. These parameters15

may be public, but the verifier does not need access to them. They include:16

• A method of generating a large search space of cloaking elements, v, for any given permutation17

σ.18

• An integer κ > 1 which is chosen to meet the security level. The signature will utilize κ19

concealed cloaking elements.20

• A rewriting algorithm R : BN → BN which uses the relations of the group to render a rewritten21

word unrecognizable. Example of such rewriting algorithms, which will serve as the third component22

of the security of WalnutDSA, can be found in [13] or [17].23

Signer’s Private Key:24

The Signer’s Private Key consists of two random, freely-reduced braid words:25

• Priv(S) = (w,w′) ∈ BN ×BN .26

Here the three braids w, w′ and w′ · w are not in the pure braid group. We assume w,w′ are27

sufficiently long to provide the necessary resistance to brute-force searches for the desired security28

level (see §9).29

Signer’s Public Key:30

The Signer’s Public Key consists of two matrix and permutation pairs, each of which is generated31

from the Private Keys of the signer via E-multiplication, and a set of T-values:32

• T-values = {τ1, τ2, . . . , τN}, where each τi is an invertible element in Fq, such that some33

specified identities involving a subset of the T-values hold. Such identities may take the form, for34

example, τa · τx · τb = −1, where 1 ≤ a < x < b ≤ N .35

7



• Pub(S) =
(
P(w), P(w′)

)
.1

6. Message Encoder Algorithm2

In order to generate a secure signature and prevent certain types of merging attacks, one must3

carefully convert the message to be signed into a braid word. Let m ∈ {0, 1}∗ be a message. Let4

H : {0, 1}∗ → {0, 1}2η denote a cryptographically secure 2η-bit hash function for η ≥ 1. Recalling5

that t is requisite in WalnutDSA that the permutation of the encoded message be trivial, we now6

present options for injective encoding functions E : {0, 1}2η → PN , where again PN ≤ BN is the7

pure braid group. Without the presence of the hash function, any homomorphic feature of an8

encoding function E could present a weakness which is entirely eliminated when the input to the9

encoder is the digest of a message. Indeed, for a good cryptographic hash function H, we know that10

H(m)H(m′) will never equal H(mm′). Further, it is unlikely to find two classes of hash functions11

H1, H2 such that the output size of H1 is half the output size of H2, and then to further find three12

messages m, m′, and m′′ such that H1(m) H1(m′) results in the same output1 as H2(m′′), and13

also get a signer to sign both messages m and m′ using H1. We also note that including a hash14

algorithm identifier in the message after it is hashed would prevent this attack.15

In order to ensure that no two messages will be encoded in the same way, we require the message16

be encoded as unique nontrivial reduced elements in a free subgroup of the pure braid group. We17

recall that a group is said to be freely generated by a subset of elements provided a reduced element18

(a word where the subwords x · x−1, and x−1 · x do not appear for any generator x) is never the19

identity.20

We would like to thank one of the referees for pointing out to us that removing the last strand21

of certain pure braids (in the manner of Artin combing) will make them trivial which allows an22

attacker to possibly remove the encoded message in the middle of the signature. The following23

encoding methods utilize pure braids which have the property that removing the last strand does24

not render them trivial.25

It is proved in [34] that any pair of pure braids that do not commute will generate a rank two
free subgroup of the pure braid group. Thus, for example, we can consider the two pure braids

x = b5 b6 b4 b5 b3 b4 (b2 b3 b1 b2)2 b−14 b−13 b−15 b−14 b−16 b−15 ,

and

y = b8 b9 b7 b8 b6 b7 (b5 b6 b4 b5)2 b−17 b−16 b−18 b−17 b−19 b−18 .

We note that removing either the first or the last strands in the manner of Artin combing will not26

eliminate either of the above braids. Since the subgroup Px,y generated by {x, y} is free we can27

look at the commutator subgroup P ′x,y, the Schreier coset representatives {xi yj | i, j ∈ Z}, and the28

(inifinite) set of free generators for P ′x,y given by29

{xi yj x y−j x−(i+1) | i, j ∈ Z}.

1For a weak hash H1 and a strong hash H2, which has twice the output size of H1, an attacker would need to

find two messages m and m′ that are preimages to the halves of H2 of the desired forgery and then get the signer
to use H1 and sign both m and m′. E.g. the attacker would need to take his or her desired forged message, hash it

using SHA2-256, find two preimages with MD5, get the signer to sign those MD5 preimages, and only then can he
or she compose a message that would verify with SHA2-256.
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Using this collection it is clear that we can produce k–bit encoders at will by taking a set of 2k1

generators and breaking the message down into k-bit chunks, where each chunk of k bits refers to a2

unique generator. In other words, one takes H(m), a fixed output of bits, and breaks it into k-bit3

chunks; for example, if H(m) is 256 bits long, one would break it into 64 4-bit chunks.4

Instances of message encoders where the output is shorter can also be obtained. For example,5

given a k-bit string of k = 40 bits, S = {di | i = 0, . . . , 39}, let6

ei =

{
1 if di = 0,

−1 if di = 1.

Then S, one chunk of H(m), becomes the braid7

b−15 be26 be37 be48 b−19 · b
e5
4 be65 be76 be87 be98 ·

be103 be114 be125 be136 be147 · be152 be163 be174 b−15 be16 ·
be181 be192 be203 be04 b−15 · b

−1
5 be16 be217 be228 b−19 ·

be04 b−15 be236 be247 be258 · be263 be274 be285 be296 be307 ·
be312 be323 be334 be345 be356 · be361 be372 be383 be394 b−15 .

The exponents above are chosen to ensure that no two concatenations of such braids will be the8

same; removing appropriate strands will result in distinct elements of a free image.9

A second and somewhat similar instance of such an encoder begins with a string of k = 24 bits,10

S = {di | i = 0, . . . , 23}, and again we set11

ei =

{
1 if di = 0,

−1 if di = 1.

Then S becomes the braid12

b−18 be09 be17 be28 be36 be47 be55 be66 be74 be85 be93 be104 be112 be123 be131 be112 be112 be123 be131 be112

·be144 be153 be165 be174 be186 be195 be207 be216 be228 be237 be09 b−18 .

Here again the exponents are chosen so as ensure the encoding of distinct strings are distinct.13

It should be noted that if k does not exactly divide the length of H(m) then the final chunk of k14

bits must be padded. For example, if k = 40, and H(m) is 256 bits, then we have 6 full 40-bit15

chunks and 16 bits left over. For that final chunk of 40 bits we set the remaining bits (di) to 1.16

7. Signature Generation and Verification17

Fix a hash function H as in §6. To sign a message m ∈ {0, 1}∗ the Signer performs the following18

steps:19

Digital Signature Generation:20

1. Compute the hash of the message H(m).21
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Public System Wide Parameters 

 𝐵𝑁, 𝐹𝑞  ⊃   {𝜏 1, 𝜏 2, … , 𝜏 𝑁  },   
 𝐻: { 0,1}∗ →   { 0,1}2𝜂, 𝐸: { 0,1 }2𝜂→ 𝐻𝑁, 
 
  

Signer  
 Signer Private Key: Priv (S) = (𝑤, 𝑤′),   
Cloaking elements: { 𝑣, 𝑣1 , 𝑣2}, Message: 𝑚 ;  𝐸(𝐻(𝑚) ) 
--------------------------------------------------------- 
 

Raw Signature:   𝜅(𝑣1 ⋅ 𝑤−1 ⋅ 𝑣 ⋅ κ(𝐸(𝐻(𝑚 ))) ⋅ 𝑤′ ⋅ 𝑣2)  
 

------------------- 
 

Final Signature: Sig = 𝑅 (𝜅(𝑣1 ⋅ 𝑤−1 ⋅ 𝑣 ⋅ κ(𝐸(𝐻(𝑚 ))) ⋅ 𝑤′ ⋅ 𝑣2) )  

Verifier  
 Receive: (m, Sig) ;  generate 𝐸(𝐻(𝑚) ) Receive: Signer Public Key, (𝑃(𝑤), 𝑃(𝑤′)) 
--------------------------------------------------------- 
  Evaluate: 𝑃(w) ⋆ Sig,   

------------------- 
 Evaluate: 𝑃 (𝐸(𝐻(𝑚) )) = (1,1) ⋆ 𝐸 (𝐻(𝑚) )   Evaluate: 1 𝑠𝑡 comp(𝑃(𝐸 (𝐻(𝑚) ))  ) ,  Evaluate: 1 𝑠𝑡 comp(𝑃(𝑤′)  ) 
--------------------------------------------------------- 
Test Equality: 1𝑠𝑡 comp(𝑃 (w) ⋆ Sig) = 1𝑠𝑡 comp(𝑃(𝐸(𝐻(𝑚) ))  )⋅ 1𝑠𝑡 comp(𝑃(𝑤′) ) 

  (m, Sig) 

Signer Security Parameters 
 𝜅; cloak generation 𝑅: 𝐵𝑁 → 𝐵𝑁 

Figure 1. WalnutDSA Flow Diagram

2. Generate cloaking elements {v, v1, v2} which cloak, respectively, the identity permutation in1

SN , IdSN , and the permutations associated with w,w′ σw, and σw′ .2

3. Generate the encoded message E(H(m)) and embed cloaking elements, yielding κ(E(H(m))).3

4. Compute Sig = R
(
κ(v1 · w−1 · v · κ(E(H(m))) · w′ · v2)

)
, which is a rewritten braid.4

5. The final signature for the message m is the ordered pair (H(m),Sig).5

10



As addressed earlier, the cloaking elements v, v1, v2 ∈ Bn disappear when the signature is E-1

multiplied by the public key Pub(S), and the insertion of κ concealed cloaking elements will, by2

construction, not impact the verification .3

Signature Verification: The signature (m,Sig) is verified as follows:4

1. Generate the encoded message E(H(m)).5

2. Evaluate P(E(H(m))).6

3. Evaluate the E-multiplication P(w) ? Sig.7

4. Test the equality8

(5) Matrix
(
P(w) ? Sig

)
?
= Matrix

(
P
(
E(H(m))

))
·Matrix

(
P
(
w′
))
,

where Matrix denotes the matrix part of the ordered pair in question, and the multiplication on9

the right is the usual matrix multiplication.10

5. Reject signatures that are longer than 214 Artin generators2.11

The signature is valid if and only if (4), (5) holds.12

8. Security Discussion13

To facilitate the accuracy of the discussion below we recall the following definition of security14

level:15

Definition 8.1. (Security Level): A secret is said to have security level k over a finite field F if16

the best known attack for obtaining the secret involves running an algorithm that requires at least17

2k elementary operations (addition, subtraction, multiplication, division) in the finite field F.18

Linear Algebraic, Group Theoretic, and Probabilistic Attacks. Neither the attack of Ben-19

Zvi–Blackburn–Tsaban [8], based on ideas in [30], or the invalid public key attack of Blackburn–20

Robshaw [14] (also [1]) target the underlying hard problems on which WalnutDSA is based. This21

is because the signature is a braid (a cloaked braid word) and the public key is coming from22

E-multiplication of the identity element with a braid that has very little algebraic structure.23

The more recent work of Hart–Kim–Micheli–Perez–Petit–Quek [26] proposes a practical universal24

forgery attack on WalnutDSA in the special case where the two private braids w and w′ are equal.25

The attack proceeds by taking a collection of signed messages (Mi, si) indexed by a finite set I26

and using them to produce a valid signature for a new message M . The main idea underlying the27

attack is finding a short expression in GL(N,Fq) for the element h = Matrix
(
P(E(M))

)
in terms28

of elements gi := Matrix
(
P(E(Mi)

)
. Namely, one seeks an expression of the form29

(6) h =

l∏
j=1

g
εij
ij
, ij ∈ I, εij ∈ {±1}.

2In practice 128-bit signatures average around 211 generators, but different rewriting techniques could extend

that. Because the braid group is infinite there are many ways to represent the same signature, however all those
ways are well beyond the 214 limit.

11



Then the braid1

s =

l∏
j=1

s
εij
ij

will be a valid signature for M .2

Thus the attack relies on both the equality of w and w′ and on finding factorizations in nonabelian3

groups: the former implies that one can appropriately multiply the signatures si together in the4

final step to produce a signature for M , and the latter implies that one can find the correct product5

of the si. This attack fails if w 6= w′, since one cannot multiply the si together to produce a valid6

signature. It is observed in [9] that it is possible to modify the attack of [26] so that it reduces to7

the case w = w′ with forged signatures that are expected to be twice as long as forged signatures8

produced by the attack of [26]. The authors of [26] point out that the forged signatures produced by9

their method (in the case w = w′) are many orders of magnitude longer than the actual signatures10

produced by WalnutDSA, so the attack is easily thwarted by rejecting long signatures. Further,11

they also point out that their attack fails with moderate increases in the parameters N, q.12

Four additional attacks have appeared recently. A Pollard-Rho type method taken by [15] uses13

the estimate for the number of braids of a given length in Artin generators (see §9), and assumes the14

output of E-multiplication is uniformly distributed, to give an exponential algorithm that recovers15

an equivalent private key of a signature from the corresponding public key. Specifically, [15] shows16

that to reach a k-bit security level:17

(7) qN(N−3)−1 > 22k

By choosing N ≥ 10 (and q = 32 or 256) this approach becomes ineffective.18

Further, the encoding method specified in §6 ensures that the vector space consisting of the matrix19

component of the signers’ public keys has a sufficiently large dimension. It was observed in [10]20

that the encoding must ensure this property to maintain the specified security level, specifically, to21

reach a k-bit security level:22

(8) qdimension > 22k

As an example of an encoding that yields sufficient security in the case N = 12, let S be the periodic23

sequence of tuples {(5, 7, 9, 11), (4, 6, 8, 10), (3, 5, 7, 9), (2, 4, 6, 8), (1, 3, 5, 7), (2, 4, 6, 8), (3, 5, 7, 9),24

(4, 6, 8, 10), . . . }. One can check that this dimension is 122, so using q = 32 or 256 results in25

sufficiently large spaces. For the case of N = 10, S can be the sequence {(3, 5, 7, 9), (2, 4, 6, 8),26

(1, 3, 5, 7), (2, 4, 6, 8), . . . } which results in a dimension of 82.27

An alternate exponential factoring attack [11] found a more efficient way to find alternate private28

keys that produce short signatures. The attack was mounted against the WalnutDSA NIST sub-29

mission, which uses an older version of WalnutDSA where τ1 = τ2 = 1, and suggested parameters30

N = 8, q = 32 for 128-bit security and N = 8, q = 256 for 256-bit security. Specifically, the attack31

in [11] showed that those parameters were too small. Against that older version of WalnutDSA32

using those parameters the attack runs in qN−5/2 time although they claim it can be reduced to33

q(N/2)−1. While the former runtime was verified, the latter runtime was never observed using the34

attack code made available.35

Against this version of WalnutDSA, where τ1 · τa · τN = −1, their running time is much higher,36

adding at least a factor of
√
q
√
x to their runtime, where x is a parameter in their attack (they set37

12



x = 60 for N = 8, it is unclear what it needs to be for N = 10). This results in an (unverified)1

search time of at least2

(9)
√
x q(N−1)/2

Next, a method for searching for cloaking elements of known permutations has been posited by3

Kotov–Menshov–Ushakov [33]. It is the presence of κ concealed cloaking elements that blocks this4

attack. In general, knowing that κ concealed cloaking elements have been placed in a known braid,5

it would require (N !)κ searches to find them and thus, taking the lack of possible birthday attacks6

into account, to insure k-bit security we would require7

(10) (N !)κ > 2k

and hence

κ > Security Level/ log2(N !).

We have explored possible birthday attacks and have ruled out obvious ways to use a birthday8

attack to discover all the concealed cloaking elements. Indeed, multiple cloaking elements could use9

the same permutation but each would still need to individually be discovered. Without access to a10

birthday attack, in the case of N = 10, and a security level of 128 we can comfortably take κ = 611

(which results in 2130.74). Likewise, when N = 10 and the security level is 256, taking κ = 12 is12

sufficient (resulting in 2261.49).13

Lastly, Merz and Petit [37] proposed a practical forgery attack on WalnutDSA. They found14

that using the Garside Normal Form of the signature allowed them to find commonalities with the15

Garside form of the encoded message, and using those commonalities they could create a forgery. As16

pointed out by the authors, the attack can be defeated by adding cloaking elements into the encoded17

message. Specifically, they conjecture that each additional cloaking element effectively mutates18

approximately five (5) permutation braids in the Garside Normal Form, but, when mutated, their19

attack no longer succeeds.20

The Merz and Petit universal forgery attack is a heuristic method that, using knowledge of a
valid signature of a message M , aims to generate a signature of a second message M ′ that will be
validated by a receiver. The decomposition algorithm introduced in their paper (which uses the
Garside canonical form as its basis) can be applied because a Walnut signature has the form

W1E(H(M))W2

and, critically, the braid element E(H(M)) is known to everyone. Knowledge of E(H(M)) allows21

the algorithm to try to derive braids W ′1,W
′
2 which satisfy the conditions Wi ≡W ′i (Mod ∆2), and22

W1 ·W2 = W ′1 ·W ′2. Once a forger has said elements in place, the braid W ′1 · E
(
H(M ′)

)
·W ′2 will23

verify as a signature of a message M ′.24

In fact, knowledge of the entire E(H(M)) is not actually requisite. Were one to insert a single25

concealed cloaking element into the encoding E(H(M)) it is still possible that the permutation26

braids in the Garside normal form of said encoding still appear in the Garside normal form for the27

signature. While the forgery in this case would be longer than the average signature, it might be28

within the acceptable length range. Thus, in order to completely thwart the heuristic attack, the29

signer must insert sufficiently many concealed cloaking elements into the braid E(H(M)), creating30

κ(E(H(M))), to completely alter the Garside normal form. We have done significant testing and31

have concluded that inserting cloaking elements every 5-12 generators will successfully block this32
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attack. It should be noted that the approaches to removing cloaking elements required the attacker1

to be able to reduce the problem to a conjugacy search problem; finding concealed cloaking elements2

in the encoded message does not fit into that effort.3

9. Brute Force Attacks4

Brute force security level for each Private Key: In order to choose private keys of security
level = SL that defeat a brute force attack, which enumerates all possible expressions in the braid
generators, we need to analyze the set of braids in BN of a given length ` and try to assess how
large this set is. Being as conservative as possible, at a minimum, the brute force security level for
the signer’s private key pair will be the brute force security level of a single private key. Letting
WN (`) denote the number of distinct braid words of length ` in BN , the most basic estimate for
WN (`) is given by

WN (`) ≤ (2(n− 1))
`
.

This trivial bound does not take into account the fact that the braid relations, particularly the5

commuting relations, force many expressions to coincide. Furthermore, the commuting relations6

bi bj = bj bi |i − j| ≥ 2, allow us to write products of generators far enough apart in weighted7

form, i.e., given bi bj where |i− j| ≥ 2, we can assume i > j.8

To start analyzing the situation we work in B5, we enumerate words of length 2 starting with
a given generator: b1 b±12 , b1 b1, b2 b±13 , b2 b2, b2 b±11 , b3 b±14 , b3 b3, b3 b±12 , b3 b±11 ,
b4 b4, b4 b

±1
3 , b4 b

±1
2 , b4 b

±1
1 . Words of length 2 starting with inverses of the generators are of

course similar, and thus the number of distinct words of length ` = 2 in B5 taking the commuting
relations into account is 44 < (2(5− 1))

2
= 64. In order to obtain a good bound for WN (`), which

eliminates the redundancy arising from the commuting elements, we require the following function:

wk(k′) =


1 k = k′,

2 k 6= k′ and k′ < N − 1,

0 k′ > N − 1.

Using this notation, the number of words of length 2 in BN is given by

WN (2) = 2

N−1∑
k1=1

k1+1∑
k2=1

wk1(k2),

where the equality holds because the remaining braid relations are longer than length 2.9

Moving to words of length `, we have

WN (`) ≤ 2

N−1∑
k1=1

k1+1∑
k2=1

wk1(k2)

k2+1∑
k3=1

wk2(k3) · · ·
k`−1+1∑
k`=1

wk`−1
(k`).

This is just an upper bound on the number of braids of length ` but it does represent what an10

attacker would have to do to be certain that all possibilities are checked. At present, the above11

method gives the best protocol known for generating braid words of length ` with the least over12

counting. There is no closed formula for the number of distinct braids of length `; in fact the13

problem is NP hard [42].14
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Hence we are reduced to finding a lower bound for the right hand side above, which can be done
as follows:

2

N−1∑
k1=1

k1+1∑
k2=1

wk1(k2)

k2+1∑
k3=1

wk2(k3) · · ·
k`−1+1∑
k`=1

wk`−1
(k`) ≥ 2`

N−1∑
k1=1

k1+1∑
k2=1
k2 6=k1

k2+1∑
k3=1
k3 6=k2

· · ·
k`−1+1∑
k`=1
k` 6=k1

1

= 2`
N−1∑
k1=1

k1∑
k2=1

k2∑
k3=1

· · ·
k`−1∑
k`=1

1 =
2`

`
· (N − 1)

(
`− 2 +N
N − 1

)
,

where
(
`−2+N
N−1

)
denotes the binomial symbol.1

Thus, in order to defeat the brute force search at a security level = SL, the signer’s private key2

must be a braid word of length ` which satisfies:3

SL ≥ log2

(
2`

`
· (N − 1)

(
`− 2 +N
N − 1

))
.

Next, we may use Stirling’s asymptotic formula for the Gamma function to obtain a lower bound

for 2`

` · (N − 1)

(
`− 2 +N
N − 1

)
. The final result is

SL > log2

(
(2`/`) · `(N−1))

(N − 1)!

)
for fixed N as ` → ∞. To find the length ` associated to a given security level SL, one may apply4

Newton’s method to solve the equation: `+ (N − 2) log2(`) = SL+ log2

(
(N − 1)!

)
. For N = 105

this results in ` = 95 for SL=128, and ` = 213 for SL=256.6

An alternative brute force attack would proceed by starting with the known permutation of a7

private key and look at the collection of inverse images of said permutation in the braid group.8

To prevent such an approach from being effective we must ensure that this search space of inverse9

images is sufficiently large. If two braids have the same associated permutation, they must differ10

by an element in the pure braid subgroup. Thus to ensure we are choosing private keys sufficiently11

long for our security level SL, each private key must be as long as the lift of a permutation times a12

sufficiently long expression in the pure braid generators.13

The pure braid subgroup of BN is generated [25] by the set of N(N − 1)/2 braids given by14

(11) gi,j = bj−1bj−2 · · · bi+1 · b2i · b−1i+1 · · · b
−1
j−2b

−1
j−1, 1 ≤ i < j ≤ N.

The relations for the pure braid subgroups are given by15

g−1r,s gi,jgr,s =


gi,j , if i < r < s < j or r < s < i < j,

gr,jgi,jg
−1
r,j , if r < i = s < j,

gr,jgs,jgi,jg
−1
s,j g

−1
r,j , if r = i < s < j,

gr,jgs,jg
−1
r,j g

−1
s,j gi,jgs,jgr,jg

−1
s,j g

−1
r,j , if r < i < s < j,

see [25] for details.16

Given the nature of the above defining relations, a reasonable estimate for the number of words17

of length L in the pure braid generators is thus given by18

15



(2 ·N(N − 1)/2)
L

= (N(N − 1))L,

and hence the security level can be estimated to be

log2((N(N − 1))L) = L · log2(N(N − 1)).

In the case N = 10, to obtain a security level of SL= 128, we would need L = 20 and SL= 2561

would require L = 40. We experimentally determined that the average length of lifting a random2

permutation with N = 10 results in a braid of length 40 (with a standard deviation of 12). Further,3

we experimentally determined that on average a word of length 20 in the purebraid generators results4

in an average 108 Artin generators (with a standard deviation of 24), which gives us a private key5

of length ≈ 148. Using 40 purebraid generators results in an average 215 (with standard deviation6

25), which gives us a private key of length ≈ 255. These private key lengths, being slightly larger7

that those obtained from the first brute force attack, will suffice to prevent both of the brute force8

attacks on the private keys.9

Search space of each Public Key Pub(S): Recall that the signer’s public key is given by the
pair: Pub(S) =

(
P(w),P(w′)

)
. When this is evaluated with the specified choices of BN and Fq it

results in two N × N matrices each with q possible elements for every entry. The last row will
consist of zeros with the exception of the final entry on the bottom right. Thus an estimate for the
number of possible matrices appearing in public keys is given by

qN(N−1)+1 = qN
2−N+1.

The search space for all such matrices is again the square of this lower bound. At present, the only10

known way to determine Priv(S) from Pub(S) is a brute-force search.11

Brute Force Removal of Cloaking Elements. If one knows the core of a cloaking element then12

one could attempt a brute-force attack to remove it from a braid. The simplistic attack proceeds13

as follows:14

(1) Start at the first element in the braid15

(2) Insert the inverse of the cloaking core at that point16

(3) Run Dehornoy to reduce the braide17

(4) Check if the overall length of the braid had a significant reduction18

(5) If not, go to the next position and return to step 2.19

Our testing has showed that different cloaking cores have significantly varying resistance to this20

type of attack. For example, the earlier, simplistic cores like b±4i can be removed by brute force21

25% of the time3 when running in B10! Worst case, if one were guessing, one would only need to try22

all 18 possible cores at every position within the braid. The current set of cloaking cores proposed23

(see Appendix A), however, only have a 2−10 chance of being removable in B10. This means if you24

have a sample braid and know the core being used, you only have a 2−10 chance of being able to25

remove the cloaking element. In other words, if you know the exact core being used then you will26

need to test over 1000 signatures before you will be able to remove it.27

Note that this works only because the core is the center of a conjugate. This means that it can28

be made arbitrarily difficult by nesting cloaking elements. One can generate a cloaking element29

and then place another cloaking element in either the left or right side of the conjugating material.30

3We also think this explains why the Kotov–Menshov–Ushakov attack was as successful as it was
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When this is done, one must remove both cloaking elements in order to proceed, which means there1

is a 2−20 chance of being able to remove both.2

Moreover, all of this presupposes the attacker knows the exact cloaking core in use. However,
when we add all the possible cores as shown in Equations 13, 14, and 15, there are at a minimum

N∑
k=5

(k − 2) · 2(k−2)

+

10∑
k=8

(k − 2)

7∑
`=5

`< k−3

2 ·
(

(k − `− 2) · (`− 2) · 2(`−1) · 2(k−`−3)
)

+
(
N − 1

)L2−θ
5+k · N · 2

L1+2

L1
·
(
L1 + 3

4

)
·
k∏
j=1

(
4 + j

)
possible cloaking cores to choose from, and an attacker would need to try all of them.3

Note that the number of cores of a given length L grows exponentially in L. Leveraging both of4

these cases, by adjusting the various possible parameters, the signature generator can make removal5

of cloaking elements arbitrarily difficult for an attacker.6

Quantum Resistance. We now quickly explore the quantum resistance of WalnutDSA. As shown7

in §8, the security of WalnutDSA is based on the hard problem of reversing E-multiplication. The8

underlying math is intimately tied to the infinite non-abelian braid group that is not directly9

connected to any finite abelian group. We will show that this lends strong credibility for the choice10

of WalnutDSA as a viable post-quantum digital signature protocol.11

The Hidden Subgroup Problem HSP on a group G asks to find an unknown subgroup H using12

calls to a known function on G which is constant on the cosets of G/H and takes different values on13

distinct cosets. Shor’s [45] quantum attack breaking RSA and other public key protocols such as14

ECC are essentially equivalent to the fact that there is a successful quantum attack (the quantum15

Fourier transform QFT) on the HSP for finite cyclic and other finite abelian groups (see [35]).16

There are at least two possible ways to try to use quantum methods for HSP to attack the17

underlying algebra: (i) one can try to use HSP in the braid group itself, for instance as an approach18

to CCSP, or (ii) one can try to use HSP in the general linear group GL(N,Fq), for instance to19

identify the image of BN under E-multiplication, or to identify the images of other subroups, such20

as the pure braids.21

Both possibilities are far beyond what is currently known for HSP. First of all, the braid group22

is infinite, and no progress has been made for HSP for infinite groups. Moreover, every non-trivial23

element in BN has infinite order, and in particular the braid group does not contain any non-24

trivial finite subgroups. Hence there does not seem to be any viable way at present to work with25

quantum solutions for HSP in BN . Second, some progress has been made in quantum solutions26

to HSP for certain nonabelian finite groups, such as semidirect products of abelian groups, or27

groups with the property that all subgroups are normal. However progress for groups with large28

degree representations such as GL(N,Fq) and other finite groups of Lie type has been more limited.29

Currently the best one knows how to do is to construct subexponential circuits to compute the QFT30

on such groups [38]. This does not give an efficient algorithm to apply quantum attacks to such31

groups.32
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Given an element1

(12) β = bε1i1 b
ε2
i2
· · · bεkik ∈ BN ,

where ij ∈ {1, . . . , N − 1}, and εj ∈ {±1}, we can define a function f : BN → GL(N,Fq) where2

f(β) is given by the E-multiplication (1, 1) ? (β, σβ) and σβ is the permutation associated to β.3

Now E-multiplication is a highly non-linear operation. As the length k of the word β increases, the4

complexity of the Laurent polynomials occurring in the E-multiplication defining f(β) increases5

exponentially. It does not seem to be possible that the function f exhibits any type of simple6

periodicity, so it is very unlikely that inverting f can be achieved with a polynomial quantum7

algorithm.8

Finally, we consider Grover’s quantum search algorithm [23] which can find an element in an9

unordered N element set in time O
(√
N
)
. Grover’s quantum search algorithm can be used to find10

the private key in a cryptosystem with a square root speed-up in running time. Basically, this cuts11

the security in half and can be defeated by doubling the key size. This is where E-multiplication12

shines. When doubling the key size one only doubles the amount of work as opposed to RSA, ECC,13

etc. where the amount of work is quadrupled. Note that almost all of the running time of signature14

verification in WalnutDSA is taken by repeated E-multiplications.15

10. Conclusion16

In this paper we presented an in-depth discussion of WalnutDSA, a quantum-resistant, group-17

theoretic public-key digital signature method with fast performance on verification. We show how18

to construct WalnutDSA keys and signatures, and how to validate the signature against the public19

key. We introduced cloaking elements and provide multiple means to generate them. Finally, we20

enumerated all known attacks against WalnutDSA and show how the current choices in parameters21

and cloaking elements defeat all known attacks.22
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Appendix A. The Splicing Method5

Recall from Proposition 4.3, that given N ≥ 10, 1 ≤ x1 < x2 < · · · < xµ ≤ N , and exponents
ε`k ∈ {+1,−1}, the braid

w = b
εx2−1

x2−1 b
εx2−2

x2−2 · · · b
εx1+1

x1+1 bx1 b
−εx1+1

x1+1 · · · b−εx2−1

x2−1

· bεx3−1

x3−1 b
εx3−2

x3−2 · · · b
εx2+1

x2+1 bx2
b
−εx2+1

x2+1 · · · b−εx3−1

x3−1

· · · · · bεxµ−1

xµ−1 b
εxµ−2

xµ−2 · · · b
εxµ−1+1

xµ−1+1 bxµ−1
b
−εxµ−1+1

xµ−1+1 · · · b
−εxµ−1−1

xµ−1 ,

is a core of a cloaking element for the identity (1, 1) with exponent 2µ

(1, 1) ? w2µ = (1, 1),

provided the identity

tx1 tx2 · · · txµ = −1,

holds. We will refer to the core w as a µ–core with xµ − x1 + 1 strands.6

In this Appendix we will work with the cases of µ = 3, 4 and introduce a method of splicing one
core into another to produce a large set of cloaking elements. Focusing first on the case of µ = 3,
we simplify the notation and assume x1 = 1, x2 = x, and x3 = k (the more general case is entirely
similar); we have

1 < x < k.

Thus suppose that w is a 3–core with k strands which by definition takes the form,

w = b
εx−1

x−1 b
εx−2

x−2 · · · b
ε2
2 b1 b

−ε2
2 · · · b−εx−1

x−1 · bεk−1

k−1 b
εk−2

k−2 · · · b
εx+1

x+1 bx b
−εx+1

x+1 · · · b−εk−1

k−1 .

For fixed x, k there are 2(k−3) possible 3–cores in the above form. Since there are (k − 2) ways to7

choose x, the number of cores in the above form is given by (k − 2) · 2(k−3). Since the inverse of a8

core is again a core, this method produces9

(13) 2(k − 2) · 2(k−3) = (k − 2) · 2(k−2),

cores. Consider the strands emerging from the collection of points

P (w) = {2, . . . , x− 1, x+ 1, . . . , k − 1}.

Each of these strands begins and ends at the same point. A ribbon within the braid w is a collection
of strands associated to a subset of consecutive elements R = {y1, y2, . . . , y`} ⊂ P (w), where the
initial exponents of all the byj appearing in w are equal:

εy1 = εy2 = · · · = εy` .

The strands emerging from {y1, y2, . . . , y`} will all either lie behind or in front of the strands10

emerging from the three strands emerging from 1, x, k. Further the set R can lie to the left of x,11

the right of x, or contain points from which lie both left and right of x.12
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Figure 2.
b−15 b−14 b−13 b−12 b1 b2 b3 b4 b5 b6

Figure 3.
b1 b
−1
6 b−15 b−14 b−13 b2 b3 b4 b5 b6

Figure 4.
b−14 b−13 b−12 b1 b2 b3 b4 b5 b6 b7 b

−1
6 b−15

We are now in a position to splice in a 3–core with ` strands into the 3–core with k strands, w,
to obtain a new core with k strands and exponent 6. In general, if there is a section of a braid
that takes the form of ` consecutive parallel strands, it is natural to insert an ` strand braid in that
region; we term this operation splicing and begin with two concrete examples. First consider the
core with T–identity t1 t5 t9 = −1,

w =
(
b−14 b−13 b2 b1 b

−1
2 b3 b4

)
·
(
b8 b
−1
7 b−16 b5 b6 b7 b

−1
8

)
.

Here P (w) = {2, 3, 4, 6, 7, 8} and then we can see that R = {3, 4, 6, 7} forms a ribbon since the
initial exponent of b3, b4, b6, b7 are all −1. The ribbon that forms allows for a 4 strand 3–core to be
spliced in which takes the form, for example,

v = b−15 b6 b5 b7,

and the final core obtained is given by

x =
(
b−14 b−13 (b−15 b4 b5 b6) b2 b1 b

−1
2 b3 b4

)
·
(
b8 b
−1
7 b−16 b5 b6 b7 b

−1
8

)
.

The T–identity for the core x is given by

t1 t5 t9 = −1, t3 t6 t7 = −1.

Figure 5. b−14 b−13 b−15 b4 b5 b6 b2 b1 b
−1
2 b3 b4 b8 b

−1
7 b−16 b5 b6 b7 b

−1
8
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In the second example we have the 3–core, b3 b4, spliced into a core where a three strand ribbon
lies entirely to the left of x:

Splice(w, v) =
(
b−14 b−13 b−12 (b3 b4) b1 b2 b3 b4

)
·
(
b8 b7 b6 b5 b

−1
6 b−17 b−18

)
.

Figure 6. b−14 b−13 b−12 b3 b4 b1 b2 b3 b4 b8 b7 b6 b5 b
−1
6 b−17 b−18

To write down the general case we begin by breaking R into the disjoint union

R = R1 ∪R2,

where R1 = {y1, . . . , yi}, R2 = {yj , . . . , y`}. Remark that either side of the above disjoint union
could be empty making the ribbon appear on one side of x (if R2 = ∅ then yi = y` and likewise if
R1 = ∅ then y1 = yj). For ease of notation let

δ = εy1 = εy2 = · · · = εy` .

Choose a 3–core, v, involving the generators {by1+1, . . . , by`−1}; we use the functional notation
v = v(by1+1, . . . , by`−1), and we note that T–identity is given by

ty1 tx0 ty` = −1,

for some x0 ∈ {y1 + 1, . . . , y` − 1}. The output of the splicing method is given in the following1

proposition.2

Proposition A.1. With all the notation above in place, the core obtained by splicing the 3–core v
into the 3–core

w = b
εx−1

x−1 b
εx−2

x−2 · · · b
ε2
2 b1 b

−ε2
2 · · · b−εx−1

x−1 · bεk−1

k−1 b
εk−2

k−2 · · · b
εx+1

x+1 bx b
−εx+1

x+1 · · · b−εk−1

k−1

is given as follows:3

(i) If R1, R2 6= ∅, we have yi = x− 1, yj = x+ 1 and

Splice(w, v) = bδyi b
δ
yi−1 · · · b

δ
y1v(by1+1, . . . , by`−1)b

εy1−1

y1−1 · · · b
ε2
2 b1 b

−ε2
2 · · · b−εy1−1

y1−1 b−δy1 · · · b
−εyi
yi

· bεk−1

k−1 · · · b
ε`+1

y`+1 b
δ
y`
· · · bδyj bx b

−δ
yj · · · b

−δ
y`
b
−ε`+1

y`+1 b
−εk−1

k−1

(ii) If R1 6= ∅, R2 = ∅, we have

Splice(w, v) = b
εx−1

x−1 · · · b
εyi+1

yi+1 b
δ
yi b

δ
yi−1 · · · b

δ
y1 v(by1+1, . . . , byi) b

εy1−1

y1−1 · · · b
ε2
2 b1·

b−ε22 · · · b−εy1−1

y1−1 b−δy1 · · · b
−δ
yi b

−εyi+1

yi+1 · · · b−εx−1

x−1
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· bεk−1

k−1 b
εk−2

k−2 · · · b
εx+1

x+1 bx b
−εx+1

x+1 · · · b−εk−1

k−1

(iii) If R1 = ∅, R2 6= ∅, we have

Splice(w, v) = b
εx−1

x−1 b
εx−2

x−2 · · · b
ε2
2 b1 b

−ε2
2 · · · b−εx−1

x−1 ·

· bεk−1

k−1 · · · b
ε`+1

y`+1 v(byj , . . . , by`−1) bδy` · · · b
δ
yj b

εyj−1

yj−1 · · · b
εx+1

x+1 bx

b
−εx+1

x+1 · · · b
−εyj−1

yj−1 b−δyj · · · b
−δ
y`
b
−ε`+1

y`+1 b
−εk−1

k−1 .

A second method of splicing will involve splicing a 4–core into a 3–core. In the above examples
a 3–core was spliced onto a ribbon that lay either behind or in front of the strands originating from
the points 1, x, k in the 3–core being altered. It’s natural to ask what happens when one if the
strands in the ribbon originates, for example from x. Thus we consider, for example, the 3–core
with k = 6 strands and x = 5:

w = b−14 b−13 b−12 b1 b2 b3 b4 b5,

whose T–identity is t1t5t6 = −1. Next consider the 4–core

v = b2 b3 b4,

whose T–identity is t2t3t4t5 = −1. When we splice v4 into w,1

Figure 7. b−14 b−13 b−12 (b2b3b4)4b1b2b3b4b5

Splice(w, v4) = b−14 b−13 b−12 (b2 b3 b4)4 b1 b2 b3 b4 b5,

we obtain a new core with exponent 6 whose T–identity takes the form

t1t5t6 = 1, t2t3t4 = −1.

Similarly, if we choose the 4–core v = b3 b4 b5, whose T–identity is t3t4t5t6 = −1, splicing v4 into w2

Splice(w, v4) = b−14 b−13 b−12 (b3 b4 b5)4 b1 b2 b3 b4 b5,

we obtain a new core with exponent 6 whose T–identity again takes the form

t1t5t6 = 1, t2t3t4 = −1.
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Figure 8. b−14 b−13 b−12 (b3b4b5)4b1b2b3b4b5

A slightly different example begins with the 3–core w = b−13 b−12 b1 b2 b3 b
−1
5 b4 b5, and again v =1

b3 b4 b5.2

Figure 9. b−13 b−12 b−15 (b3b4b5)4b1b2b3b4b5

Here we obtain a new core with exponent 6,

w = b−13 b−12 b−15 (b3 b4 b5)4 b1 b2 b3 b4 b5,

where the T–identities are given by

t1t4t6 = 1, t2t3t5 = −1.

The commonality in the above examples is the presence of one of the strands which begin at x (or k3

in the latter case) eliminates that T–value in the T–identity (said strand is purple in figures 8,9,10).4

One approach to understanding these core is demonstrated as follows: returning to the first
example

Splice(w, v4) = b−14 b−13 b−12 (b2 b3 b4)4 b1 b2 b3 b4 b5,

where w = b−14 b−13 b−12 b1 b2 b3 b4 b5 and v = b2 b3 b4, we begin by observing

Splice(w, v4) = Splice(w, u4) = b−14 b−13 b−12 b1 b2 b3 b4 b5 ( b1 b2 b3)4,
25



where u = b1 b2 b3.1

Figure 10. b−14 b−13 b−12 b1b2b3b4b5(b1b2b3)4

Consider the following set of an alternative set of generators for the braid group BN :

yi = bibi+1 · · · bN−1,
which satisfy the identity

yj yi = yi yj−1 y
−1
N−1, if i < j.

Specializing to our N = 6 case, we simplify Splice(w, u4)3 as follows:

Splice(w, u4)3 = y61 y
3
2 y

6
4 y
−3
2 .

Observe that since y61 generates the center of B6, and hence for any power q,

Splice(w, u4)3q = y6q1 y32 y
6q
4 y−32 .

Now the T–identity which will make y61 a core with exponent 2 is

t1t2t3t4t5t6 = −1.

Likewise T–identity which will make y64 a core with exponent 2 is t4t5t6 = −1. Letting the inverse
of the permutation of y32 act on t4t5t6 = −1 we obtain t2t3t4 = −1,

σ−1

y32

(
t4t5t6 = −1

)
yields

(
t2t3t4 = −1

)
.

and in combination with t1t2t3t4t5t6 = −1, we deduce the T–identity for Splice(w, u4)3: Splice(w, u4)3

is a core with exponent 2 and T–identities

t1t2t3t4t5t6 = −1, t2t3t4 = −1,

=⇒ t1t5t6 = 1, t2t3t4 = −1.

The above analysis serves as guide to generating even more cloaking elements. Again starting
with N = 6 we can looks at braids of the form

y61 z y
6
4 z
−1 = (b1 b2 b3 b4 b5)6 · z (b4 b5)6 z−1

where z is a braid that doesn’t commute with (b4 b5). In practice we would choose z so that its2

associate permutation σz does not fix the set {4, 5, 6}.3
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To move from k = 6 to a larger k we can thread additional strands into a core of the type in such
a way that the core itself is not altered. To accomplish this, suppose we would like to generate a
core with k = 8 by threading additional strands in at points 3, 6. Begin by choosing a permutation
in σ ∈ S8 which maps 3→ 7, 6→ 8. Next choose a braid β ∈ B8 which is a lift of σ. Viewing the
braid y61 z y

6
4 z
−1 ∈ B8, the conjugate

β y61 z y
6
4 z
−1 β−1,

will be a core with k = 8 strand of exponent 2 with T–identities

σ−1
β·z

(
t4t5t6 = −1

)
, σ−1

β

(
t1t2t3t4t5t6 = −1

)
.

Appendix B. Some combinatorics of the splicing method1

Having generated two types of cores via a splicing technique, what remains is to obtain a lower
bound on the size of the set of generated cores. With this goal in mind we begin with the cores
described in Proposition A.1 of Appendix A. Let N ≥ 10, and integers (points) x, k chosen so that
1 < x < k ≤ N. Thus, we begin again with w a 3–core with k strands) which by definition takes
the form,

w = b
εx−1

x−1 b
εx−2

x−2 · · · b
ε2
2 b1 b

−ε2
2 · · · b−εx−1

x−1 · bεk−1

k−1 b
εk−2

k−2 · · · b
εx+1

x+1 bx b
−εx+1

x+1 · · · b−εk−1

k−1 ,

and the set

P (w) = {2, . . . , x− 1, x+ 1, . . . , k − 1}.
Assuming we have an ` strand ribbon

R = {y1, y2, . . . , y`} ⊂ P (w),

on which to splice an ` strand 3–core v, the question becomes how many ways can the ribbon appear
in P (w), how many unconstrained strands will remain, and how many ` strand 3–cores v are there
to splice in. It’s clear that the number of ways to fit an ` strand ribbon is given by

k − `− 2,

and the number of strands that are left without constraint on their exponent is given by

k − `− 3.

As we saw in Appendix A, the number of ` strand 3–cores is given by (`− 2) · 2(`−1), and in each2

such core there are (N − 2) ways to choose the point 1 ≤ x ≤ N − 2. Further, each such core3

can be spliced into a ribbon which lies either behind or in front of the original k strand 3–core.4

In summation, the number of cores generated with this first splicing method where we allow, for5

example, 8 ≤ k ≤ 10 and 5 ≤ ` ≤ 7 is given by,6

(14)

10∑
k=8

(k − 2)

7∑
`=5

`< k−3

2 ·
(

(k − `− 2) · (`− 2) · 2(`−1) · 2(k−`−3)
)
≈ 213.7.

We move next to the cores where an ` strand 4–core is spliced into a k strand 3–core (where k ≤ 10)
which we saw in Appendix A may take the from

β y61 z y
6
4 z
−1 β−1.
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We recall yi = bi · bi+1 · · · · bN−1, z is an element in the subgroup generated by {b2, b3, b4, b5} that1

does not commute with y64 . Further, β is a lift of a permutation that maps a set of k − 6 points2

to {7, . . . , k} and maps the remaining 6 points to {1, 2, 3, 4, 5, 6}. In order to get a lower bound on3

how many such cores we can generate we estimate the number of possible elements z and β that4

are bounded by a given length.5

To that end, recall the estimate for the number of words of length L in the braid group BN from6

§9 which is given by7

2L

L
· (N − 1)

(
L− 2 +N
N − 1

)
.

One collection of elements z that will not (in general) commute with y64 are braids of the form
z1 · b3, where z1 is again an element in the subgroup generated by {b2, b3, b4, b5}. We conclude that
the collection of elements z that have expressions as a product of L1 Artin generators is bounded
below by

2L1+2

L1
·
(
L1 + 3

4

)
.

A lower bound for the number of choices for the element β can be obtained as follows. Let k be
the number of strands being threaded into 6 strand braid y61 z y

6
4 z
−1. Then, since 0 ≤ k ≤ 4, we

see that there are
k∏
j=1

(
(6− 2) + j

)
possibilities. The permutation σβ associated with β, when lifted to the braid group, can be modified
by a pure braid of some fixed length making it possible to obtain a rough lower bound on the number
of elements β. Assuming we are modifying by a pure braid which is expressed as a word of length
q in the pure braid generators, the length as a word in the Artin generators will on average have
length about q(N−1). Hence, the number of ways to generate the requisite β (which we assume can
be written as a product of L2 Artin generators and is obtained by lifting a permutation σβwhich is
written as a product of θ transpositions above) is given by

k∏
j=1

(6 + j − 2) ·N(N − 1)
(L2−θ)
6+k−1 .

We observe that by restricting our attention to the case where θ = 5k then the collection of8

generated braids is on the order of 232.9

To conclude this discussion we state the following proposition:10

Proposition B.1. Let N ≥ 6. Consider cores of BN that take the form

β y61 z y
6
4 z
−1 β−1

where11

• β ∈ BN is as discussed above and has an expression of length L2 in Artin generators;12

• θ is the minimal number of ways of writing σβ as a product of transpositions;13

• z is an element in the subgroup generated by {b2, b3, b4, b5} as discussed above which has an14

expression of length L1 in in Artin generators.15
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Then a lower bound for the number of such cores is given by1

(15)
(
N − 1

)L2−θ
5+k · N · 2

L1+2

L1
·
(
L1 + 3

4

)
·
k∏
j=1

(
4 + j

)
.
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